A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire

被引:66
|
作者
de la Mata, Maria [1 ]
Zhou, Xiang [2 ]
Furtmayr, Florian [3 ]
Teubert, Joerg [3 ]
Gradecak, Silvija [2 ]
Eickhoff, Martin [3 ]
Fontcuberta i Morral, Anna [4 ]
Arbiol, Jordi [1 ,5 ]
机构
[1] ICMAB CSIC, Inst Ciencia Mat Barcelona, E-08193 Bellaterra, Cat, Spain
[2] MIT, Cambridge, MA 02139 USA
[3] Univ Giessen, Inst Phys 1, DE-35392 Giessen, Germany
[4] Ecole Polytech Fed Lausanne, Lab Mat Semicond, CH-1015 Lausanne, Switzerland
[5] ICREA, E-08010 Barcelona, Cat, Spain
关键词
INDIUM-PHOSPHIDE NANOWIRES; CHEMICAL-VAPOR-DEPOSITION; MOLECULAR-BEAM EPITAXY; LIGHT-EMITTING-DIODES; FREE GAAS NANOWIRES; OPTICAL-PROPERTIES; SILICON NANOWIRES; SOLAR-CELLS; HETEROSTRUCTURE NANOWIRES; BUILDING-BLOCKS;
D O I
10.1039/c3tc30556b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We review different strategies to achieve a three-dimensional energy bandgap modulation in a nanowire (NW) by the introduction of self-assembled 0D, 1D and 2D quantum structures, quantum dots (QDs), quantum wires (QWRs) and quantum wells (QWs). Starting with the well-known axial, radial (coaxial/prismatic) or polytypic quantum wells in GaN/AlN, GaAs/AlAs or wurtzite/zinc-blende systems, respectively, we move to more sophisticated structures by lowering their dimensionality. New recent approaches developed for the self-assembly of GaN quantum wires and InAs or AlGaAs quantum dots on single nanowire templates are reported and discussed. Aberration corrected scanning transmission electron microcopy is presented as a powerful tool to determine the structure and morphology at the atomic scale allowing for the creation of 3D atomic models that can help us to understand the enhanced optical properties of these advanced quantum structures.
引用
收藏
页码:4300 / 4312
页数:13
相关论文
共 50 条
  • [1] Photocatalytic deposition of noble metals on 0D, 1D, and 2D TiO2 structures: a review
    Veziroglu, Salih
    Shondo, Josiah
    Tjardts, Tim
    Sarwar, Tamim B.
    Suenbuel, Ayse
    Mishra, Yogendra Kumar
    Faupel, Franz
    Aktas, Oral Cenk
    NANOSCALE ADVANCES, 2024, 6 (24): : 6096 - 6108
  • [2] Thermodynamics at microscales: 3D→2D, 1D and 0D
    Kun Dong
    Feng Huo
    Suojiang Zhang
    GreenEnergy&Environment, 2020, 5 (03) : 251 - 258
  • [3] Thermodynamics at microscales: 3D → 2D, 1D and 0D
    Dong, Kun
    Huo, Feng
    Zhang, Suojiang
    GREEN ENERGY & ENVIRONMENT, 2020, 5 (03) : 251 - 258
  • [4] Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals
    Li, Qiuyang
    Wu, Kaifeng
    Zhu, Haiming
    Yang, Ye
    He, Sheng
    Lian, Tianquan
    CHEMICAL REVIEWS, 2024, 124 (09) : 5695 - 5763
  • [5] On the origin of the combinatorial complexity of the crystal structures with 0D, 1D, or 2D primary motifs
    Banaru, Daria A.
    Hornfeck, Wolfgang
    Aksenov, Sergey M.
    Banaru, Alexander M.
    CRYSTENGCOMM, 2023, 25 (14) : 2144 - 2158
  • [6] Building functional nanosystems with 0D, 1D and 2D nanostructures
    Duan, Xiangfeng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [7] Fabrication of 2D, 1D and 0D ordered metallic nanostructures
    González, EM
    Villegas, JE
    Jaque, D
    Navarro, E
    Vicent, JL
    VACUUM, 2002, 67 (3-4) : 693 - 698
  • [8] 0D, 1D and 2D nanomaterials for visible photoelectrochemical water splitting. A Review
    Daulbayev, Chingis
    Sultanov, Fail
    Bakbolat, Baglan
    Daulbayev, Olzhas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (58) : 33325 - 33342
  • [9] Application Research and Progress of 0D, 1D and 2D ZnO Nanomaterials
    Yang Feng
    Wang Fei
    Jia Ruo-fei
    Yang Li-li
    Yang Hui
    Li Lan
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2018, 46 (10): : 20 - 29
  • [10] Low dimensional (0D, 1D, 2D) devices for future electronics
    Oda, Shunri
    2017 IEEE 12TH NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2017, : 182 - 183