The THEMIS Fluxgate Magnetometer

被引:1119
|
作者
Auster, H. U. [1 ]
Glassmeier, K. H. [1 ]
Magnes, W. [2 ]
Aydogar, O. [2 ]
Baumjohann, W. [2 ]
Constantinescu, D. [1 ]
Fischer, D. [2 ]
Fornacon, K. H. [1 ]
Georgescu, E. [4 ]
Harvey, P. [5 ]
Hillenmaier, O. [3 ]
Kroth, R. [3 ]
Ludlam, M. [5 ]
Narita, Y. [1 ]
Nakamura, R. [2 ]
Okrafka, K. [1 ]
Plaschke, F. [1 ]
Richter, I. [1 ]
Schwarzl, H. [6 ]
Stoll, B. [1 ]
Valavanoglou, A. [2 ]
Wiedemann, M. [3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany
[2] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[3] Magson GmbH Berlin, D-12489 Berlin, Germany
[4] MPE Garching, D-85740 Garching, Germany
[5] UCB, SSL, Berkeley, CA 94720 USA
[6] Univ Calif Los Angeles, IGPP, Los Angeles, CA 90095 USA
关键词
Plasma physics; Substorm; Fluxgate magnetometer; Calibration;
D O I
10.1007/s11214-008-9365-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The THEMIS Fluxgate Magnetometer (FGM) measures the background magnetic field and its low frequency fluctuations (up to 64 Hz) in the near-Earth space. The FGM is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT, and it is particularly designed to study abrupt reconfigurations of the Earth's magnetosphere during the substorm onset phase. The FGM uses an updated technology developed in Germany that digitizes the sensor signals directly and replaces the analog hardware by software. Use of the digital fluxgate technology results in lower mass of the instrument and improved robustness. The present paper gives a description of the FGM experimental design and the data products, the extended calibration tests made before spacecraft launch, and first results of its magnetic field measurements during the first half year in space. It is also shown that the FGM on board the five THEMIS spacecraft well meets and even exceeds the required conditions of the stability and the resolution for the magnetometer.
引用
收藏
页码:235 / 264
页数:30
相关论文
共 50 条
  • [1] The THEMIS Fluxgate Magnetometer
    H. U. Auster
    K. H. Glassmeier
    W. Magnes
    O. Aydogar
    W. Baumjohann
    D. Constantinescu
    D. Fischer
    K. H. Fornacon
    E. Georgescu
    P. Harvey
    O. Hillenmaier
    R. Kroth
    M. Ludlam
    Y. Narita
    R. Nakamura
    K. Okrafka
    F. Plaschke
    I. Richter
    H. Schwarzl
    B. Stoll
    A. Valavanoglou
    M. Wiedemann
    [J]. Space Science Reviews, 2008, 141 : 235 - 264
  • [2] RESIDENT SPACE OBJECT DETECTION USING ARCHIVAL THEMIS FLUXGATE MAGNETOMETER DATA
    Brew, Julian
    Holzinger, Marcus J.
    [J]. SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 4233 - 4251
  • [3] Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data
    Brew, Julian
    Holzinger, Marcus J.
    [J]. ADVANCES IN SPACE RESEARCH, 2018, 61 (09) : 2301 - 2319
  • [4] FLUXGATE MAGNETOMETER
    PRIMDAHL, F
    [J]. JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1979, 12 (04): : 241 - 253
  • [5] FLUXGATE MAGNETOMETER
    PICKWORTH, G
    [J]. ELECTRONICS WORLD & WIRELESS WORLD, 1992, (1675): : 477 - 477
  • [6] A sensitive fluxgate magnetometer
    Reutov, Yu. Ya.
    [J]. RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2008, 44 (06) : 386 - 390
  • [7] A sensitive fluxgate magnetometer
    Yu. Ya. Reutov
    [J]. Russian Journal of Nondestructive Testing, 2008, 44 : 386 - 390
  • [8] Portable fluxgate magnetometer
    Ripka, P
    Kaspar, P
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1998, 68 (1-3) : 286 - 289
  • [9] The fluxgate magnetometer for cryogenics
    Uchaikin, SV
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 2809 - 2810
  • [10] THE IRM FLUXGATE MAGNETOMETER
    LUHR, H
    KLOCKER, N
    OELSCHLAGEL, W
    HAUSLER, B
    ACUNA, M
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (03): : 259 - 261