Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide

被引:20
|
作者
Darvishzadeh-Varcheie, Mahsa [1 ]
Guclu, Caner [1 ]
Ragan, Regina [2 ]
Boyraz, Ozdal [1 ]
Capolino, Filippo [1 ]
机构
[1] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
来源
OPTICS EXPRESS | 2016年 / 24卷 / 25期
基金
美国国家科学基金会;
关键词
RAMAN-SCATTERING; FANO RESONANCES; OPTICAL SENSOR; SERS; NANOPARTICLES; SILVER; NANOCLUSTERS; METASURFACES; SPECTROSCOPY; NANOSPHERES;
D O I
10.1364/OE.24.028337
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the feasibility of CMOS-compatible optical structures to develop novel integrated spectroscopy systems. We show that local field enhancement is achievable utilizing dimers of plasmonic nanospheres that can be assembled from colloidal solutions on top of a CMOS-compatible optical waveguide. The resonant dimer nanoantennas are excited by modes guided in the integrated silicon nitride waveguide. Simulations show that 100-fold electric field enhancement builds up in the dimer gap as compared to the waveguide evanescent field amplitude at the same location. We investigate how the field enhancement depends on dimer location, orientation, distance and excited waveguide mode. (C) 2016 Optical Society of America
引用
收藏
页码:28337 / 28352
页数:16
相关论文
共 50 条
  • [1] Arrays of Bowtie Plasmonic Nanoantennas for Field Enhancement in MOEMS
    Obradov, M.
    Jaksic, Z.
    Mladenovic, I.
    Tanaskovic, D.
    Jaksic, O.
    [J]. 2019 IEEE 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2019), 2019, : 87 - 90
  • [2] Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide
    W.-B. Ewe
    H.-S. Chu
    E.-P. Li
    B. S. Luk’yanchuk
    [J]. Applied Physics A, 2010, 100 : 315 - 319
  • [3] Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide
    Ewe, W. -B.
    Chu, H. -S.
    Li, E. -P.
    Luk'yanchuk, B. S.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 100 (02): : 315 - 319
  • [4] Optical trapping using all silicon nanoantennas with ultra-high electric field enhancement
    Zhan, Wei
    Gao, Kui
    Zhu, Chenjun
    Song, Wuzhou
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (24)
  • [5] Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas
    Archanjo, B. S.
    Vasconcelos, T. L.
    Oliveira, B. S.
    Song, C.
    Allen, F. I.
    Achete, C. A.
    Ercius, P.
    [J]. ACS PHOTONICS, 2018, 5 (07): : 2834 - 2842
  • [6] Magnetic Nanoantennas Made of Plasmonic Nanoclusters for Photoinduced Magnetic Field Enhancement
    Darvishzadeh-Varcheie, Mahsa
    Guclu, Caner
    Capolino, Filippo
    [J]. PHYSICAL REVIEW APPLIED, 2017, 8 (02):
  • [7] Giant localized electromagnetic field of highly doped silicon plasmonic nanoantennas
    Ahmad E. Alsayed
    AbdelRahman M. Ghanim
    Ashraf Yahia
    Mohamed A. Swillam
    [J]. Scientific Reports, 13
  • [8] Giant localized electromagnetic field of highly doped silicon plasmonic nanoantennas
    Alsayed, Ahmad E.
    Ghanim, AbdelRahman M.
    Yahia, Ashraf
    Swillam, Mohamed A.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Investigations of scattering and field enhancement effects in retardation-based plasmonic nanoantennas
    Nielsen, M. G.
    Pors, A.
    Nielsen, R. B.
    Boltasseva, A.
    Albrektsen, O.
    Willatzen, M.
    Bozhevolnyi, S. I.
    [J]. PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES VIII, 2010, 7757
  • [10] Theoretical investigation of electric field induces second harmonic generation in silicon nitride waveguide structures
    Shetewy, Abdou
    Catuneanu, Mircea
    Jamshidi, Kambiz
    [J]. INTEGRATED PHOTONICS PLATFORMS III, 2024, 13012