Strong spin-photon coupling in silicon

被引:293
|
作者
Samkharadze, N. [1 ,2 ]
Zheng, G. [1 ,2 ]
Kalhor, N. [1 ,2 ]
Brousse, D. [3 ,4 ]
Sammak, A. [3 ,4 ]
Mendes, U. C. [5 ,6 ]
Blais, A. [5 ,6 ,7 ]
Scappucci, G. [1 ,2 ]
Vandersypen, L. M. K. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] QuTech, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[4] Netherlands Org Appl Sci Res TNO, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[5] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[6] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[7] Canadian Inst Adv Res, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
CIRCUIT QUANTUM ELECTRODYNAMICS; QUBIT; CAVITY; DOT;
D O I
10.1126/science.aar4054
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot-based spin qubit registers.
引用
收藏
页码:1123 / 1126
页数:4
相关论文
共 50 条
  • [1] Spin-Photon Coupling for Atomic Qubit Devices in Silicon
    Osika, Edyta N.
    Kocsis, Sacha
    Hsueh, Yu-Ling
    Monir, Serajum
    Chua, Cassandra
    Lam, Hubert
    Voisin, Benoit
    Simmons, Michelle Y.
    Rogge, Sven
    Rahman, Rajib
    [J]. PHYSICAL REVIEW APPLIED, 2022, 17 (05)
  • [2] Spin-photon coupling
    Horiuchi, Noriaki
    [J]. NATURE PHOTONICS, 2018, 12 (05) : 254 - 254
  • [3] An iterative polygonal micromagnet design for spin-photon coupling on silicon
    Yang, Jie-Cheng
    Li, Zong-Hu
    Wang, Bao-Chuan
    Li, Hai-Ou
    Cao, Gang
    Guo, Guo-Ping
    [J]. APPLIED PHYSICS LETTERS, 2023, 122 (05)
  • [4] Magnetic strong coupling in a spin-photon system and transition to classical regime
    Chiorescu, I.
    Groll, N.
    Bertaina, S.
    Mori, T.
    Miyashita, S.
    [J]. PHYSICAL REVIEW B, 2010, 82 (02):
  • [5] Enhancing spin-photon coupling with a micromagnet
    Hei, Xin-Lei
    Dong, Xing-Liang
    Chen, Jia-Qiang
    Shen, Cai-Peng
    Qiao, Yi-Fan
    Li, Peng-Bo
    [J]. PHYSICAL REVIEW A, 2021, 103 (04)
  • [6] A coherent spin-photon interface in silicon
    Mi, X.
    Benito, M.
    Putz, S.
    Zajac, D. M.
    Taylor, J. M.
    Burkard, Guido
    Petta, J. R.
    [J]. NATURE, 2018, 555 (7698) : 599 - +
  • [7] Synchronized spin-photon coupling in a microwave cavity
    Grigoryan, Vahram L.
    Shen, Ka
    Xia, Ke
    [J]. PHYSICAL REVIEW B, 2018, 98 (02)
  • [8] Irreducible tensor form for the spin-photon coupling
    Jursenas, Rytis
    [J]. PHYSICS LETTERS A, 2017, 381 (38) : 3295 - 3299
  • [9] Spin-Photon Coupling in Organic Chiral Crystals
    Gao, Mingsheng
    Wang, Zhongxuan
    Zhang, Xiao
    Hao, Xiaotao
    Qin, Wei
    [J]. NANO LETTERS, 2019, 19 (12) : 9008 - 9012
  • [10] Strong coupling between a photon and a hole spin in silicon
    Yu, Cecile X.
    Zihlmann, Simon
    Abadillo-Uriel, Jose C.
    Michal, Vincent P.
    Rambal, Nils
    Niebojewski, Heimanu
    Bedecarrats, Thomas
    Vinet, Maud
    Dumur, Etienne
    Filippone, Michele
    Bertrand, Benoit
    De Franceschi, Silvano
    Niquet, Yann-Michel
    Maurand, Romain
    [J]. NATURE NANOTECHNOLOGY, 2023, 18 (07) : 741 - +