Predicting Securities Fraud Settlements and Amounts: A Hierarchical Bayesian Model of Federal Securities Class Action Lawsuits

被引:18
|
作者
McShane, Blakeley B. [1 ]
Watson, Oliver P.
Baker, Tom [2 ]
Griffith, Sean J. [3 ]
机构
[1] Northwestern Univ, Kellogg Sch Management, Evanston, IL 60208 USA
[2] Univ Penn, Sch Law, Philadelphia, PA 19104 USA
[3] Fordham Univ, Sch Law, Bronx, NY 10458 USA
关键词
MERITS MATTER; EMPIRICAL-ANALYSIS; PLAINTIFFS; DIRECTORS; INSURANCE;
D O I
10.1111/j.1740-1461.2012.01260.x
中图分类号
D9 [法律]; DF [法律];
学科分类号
0301 ;
摘要
This article develops models that predict the incidence and amount of settlements for federal class action securities fraud litigation in the post-PLSRA period. We build hierarchical Bayesian models using data that come principally from Riskmetrics and identify several important predictors of settlement incidence (e.g., the number of different types of securities associated with a case, the company return during the class period) and settlement amount (e.g., market capitalization, measures of newsworthiness). Our models also allow us to estimate how the circuit court a case is filed in as well as the industry of the plaintiff firm associate with settlement outcomes. Finally, they allow us to accurately assess the variance of individual case outcomes revealing substantial amounts of heterogeneity in variance across cases.
引用
收藏
页码:482 / 510
页数:29
相关论文
共 39 条