Use of kernel (regression) based methods for sensor validation

被引:0
|
作者
Usynin, A [1 ]
Hines, JW [1 ]
机构
[1] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA
关键词
fault detection; kernel regression; performance metrics;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Having the advantage of mathematical and intuitive simplicity,, kernel regression, is a widely used non-parametric technique. In this paper, a kernel regression-based approach to on-line, empirical sensor validation is investigated. Several metrics are used to assess the performance of the method in terms of its ability to detect and accommodate faulty measurements. An example application is provided to reveal the dependence of the performance metrics on the kernel bandwidth parameter.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 50 条
  • [1] Use of kernel based techniques for sensor validation in nuclear power plants
    Gribok, AV
    Urmanov, AM
    Hines, JW
    Uhrig, RE
    [J]. STATISTICAL DATA MINING AND KNOWLEDGE DISCOVERY, 2004, : 217 - 231
  • [2] A Soft Sensor Based on Kernel PCA and Composite Kernel Support Vector Regression for a Flotation Circuit
    Yang, Huizhi
    Huang, Min
    [J]. 2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5, 2010, : 375 - 378
  • [3] NONPARAMETRIC REGRESSION - KERNEL METHODS AND WEIGHTED LOCAL REGRESSION
    ELFAOUZI, NE
    SARDA, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (01): : 69 - 72
  • [4] Testing linearity of regression models with dependent errors by kernel based methods
    Biedermann, S
    Dette, H
    [J]. TEST, 2000, 9 (02) : 417 - 438
  • [5] Testing linearity of regression models with dependent errors by kernel based methods
    Stefanie Biedermann
    Holger Dette
    [J]. Test, 2000, 9 : 417 - 438
  • [6] A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression
    Stock, Michiel
    Pahikkala, Tapio
    Airola, Antti
    De Baets, Bernard
    Waegeman, Willem
    [J]. NEURAL COMPUTATION, 2018, 30 (08) : 2245 - 2283
  • [7] Variogram based noise variance estimation and its use in kernel based regression
    Pelckmans, K
    De Brabanter, J
    Suykens, JAK
    De Moor, B
    [J]. 2003 IEEE XIII WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING - NNSP'03, 2003, : 199 - 208
  • [8] The Choquet Kernel on the use of Regression Problem
    Tehrani, Ali Fallah
    [J]. INFORMATION SCIENCES, 2021, 556 : 256 - 272
  • [9] CONSISTENT REGRESSION OF BIOPHYSICAL PARAMETERS WITH KERNEL METHODS
    Diaz, Emiliano
    Perez-Suay, Adrian
    Laparra, Valero
    Camps-Valls, Gustau
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4047 - 4050
  • [10] Parsimonious Modeling for Sleep Fidget Soft Sensor Based on Kernel Methods
    Li, Taifu
    Su, Yingying
    Shi, JinLiang
    Wang, Debiao
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 9162 - 9167