CONNECTEDNESS OF THE SOLUTION SET FOR SYMMETRIC VECTOR QUASIEQUILIBRIUM PROBLEMS

被引:0
|
作者
Chen, Bin [1 ]
Huang, Nan-jing [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2013年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
symmetric vector quasiequilibrium problems; connectedness; compactness; scalarization; VARIATIONAL-INEQUALITIES; SOLUTION MAPPINGS; EXISTENCE; SEMICONTINUITY; OPTIMIZATION; CONTINUITY;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, by using a scalarization method, a characterrization of weak efficient solutions for a symmetric vector quasiequilibrium problem in Hausdorff topological vector spaces is obtained. Further, the existence of the weak efficient solutions and the connectedness of the set of weak efficient solutions for the symmetric vector quasiequilibrium problems are proved. The results presented in this paper generalize and improve some known results [7, 13, 23, 39].
引用
收藏
页码:29 / 45
页数:17
相关论文
共 50 条