Adaptive nonparametric confidence sets

被引:53
|
作者
Robins, James
Van der Vaart, Aad
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[2] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2006年 / 34卷 / 01期
关键词
adaptation; white noise model; density estimation; regression; testing rate;
D O I
10.1214/009053605000000877
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct honest confidence regions for a Hilbert space-valued parameter in various statistical models. The confidence sets can be centered at arbitrary adaptive estimators, and have diameter which adapts optimally to a given selection of models. The latter adaptation is necessarily limited in scope. We review the notion of adaptive confidence regions, and relate the optimal rates of the diameter of adaptive confidence regions to the minimax rates for testing and estimation. Applications include the finite normal mean model, the white noise model, density estimation and regression with random design.
引用
收藏
页码:229 / 253
页数:25
相关论文
共 50 条
  • [1] Calibrated nonparametric confidence sets
    Tapon Roy
    [J]. Journal of Mathematical Chemistry, 1997, 21 : 103 - 109
  • [2] Calibrated nonparametric confidence sets
    Roy, T
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1997, 21 (01) : 103 - 109
  • [3] Confidence sets for nonparametric wavelet regression
    Genovese, CR
    Wasserman, L
    [J]. ANNALS OF STATISTICS, 2005, 33 (02): : 698 - 729
  • [4] Confidence sets in nonparametric calibration of exponential Levy models
    Soehl, Jakob
    [J]. FINANCE AND STOCHASTICS, 2014, 18 (03) : 617 - 649
  • [5] Adaptive Confidence Bands for Nonparametric Regression Functions
    Cai, T. Tony
    Low, Mark
    Ma, Zongming
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1054 - 1070
  • [6] Honest and adaptive confidence sets in LP
    Carpentier, Alexandra
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 2875 - 2923
  • [7] Adaptive confidence sets for kink estimation
    Bengs, Viktor
    Holzmann, Hajo
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 1523 - 1579
  • [8] On adaptive confidence sets for the Wasserstein distances
    Deo, Neil
    Randrianarisoa, Thibault
    [J]. BERNOULLI, 2023, 29 (03) : 2119 - 2141
  • [9] Confidence sets in nonparametric calibration of exponential Lévy models
    Jakob Söhl
    [J]. Finance and Stochastics, 2014, 18 : 617 - 649
  • [10] Nonparametric confidence regions for level sets: Statistical properties and geometry
    Qiao, Wanli
    Polonik, Wolfgang
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 985 - 1030