Mathematical models for local nontexture inpaintings

被引:876
|
作者
Chan, TF [1 ]
Shen, JH
机构
[1] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
inpainting; disocclusion; interpolation; variational/PDE method; prior image models; total variation; digital zooming; image coding;
D O I
10.1137/S0036139900368844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the recent work of Bertalmio et al. on digital inpaintings [SIGGRAPH 2000], we develop general mathematical models for local inpaintings of nontexture images. On smooth regions, inpaintings are connected to the harmonic and biharmonic extensions, and inpainting orders are analyzed. For inpaintings involving the recovery of edges, we study a variational model that is closely connected to the classical total variation (TV) denoising model of Rudin, Osher, and Fatemi [Phys. D, 60 (1992), pp. 259 268]. Other models are also discussed based on the Mumford-Shah regularity [Comm. Pure Appl. Math., XLII (1989), pp. 577 685] and curvature driven diffusions (CDD) of Chan and Shen [J. Visual Comm. Image Rep., 12 (2001)]. The broad applications of the inpainting models are demonstrated through restoring scratched old photos, disocclusion in vision analysis, text removal, digital zooming, and edge-based image coding.
引用
收藏
页码:1019 / 1043
页数:25
相关论文
共 50 条
  • [1] PDE models for image inpaintings and applications
    Chan, TF
    Shen, JH
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS I AND II, 2001, : 30 - 36
  • [2] A local nontexture image inpainting and denoising based on nonlinear PDEs
    Fu, SJ
    Ruan, QQ
    [J]. 2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 1029 - 1032
  • [3] On local singularities in mathematical models of physical fields
    Grinchenko V.T.
    Ulitko A.F.
    [J]. Journal of Mathematical Sciences, 1999, 97 (1) : 3777 - 3795
  • [4] MATHEMATICAL-MODELS FOR LOCAL SOCIAL NETWORKS
    PATTISON, P
    [J]. PROCEEDINGS OF THE XXIV INTERNATIONAL CONGRESS OF PSYCHOLOGY, VOL 4: MATHEMATICAL AND THEORETICAL SYSTEMS, 1989, : 139 - 149
  • [5] Mathematical models for cell migration: a non-local perspective
    Chen, Li
    Painter, Kevin
    Surulescu, Christina
    Zhigun, Anna
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2020, 375 (1807)
  • [6] Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models
    Adebayo, O. E.
    Urcun, S.
    Rolin, G.
    Bordas, S. P. A.
    Trucu, D.
    Eftimie, R.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 17446 - 17498
  • [7] On the mathematical stability of stratified flow models with local turbulence closure schemes
    Eric Deleersnijder
    Emmanuel Hanert
    Hans Burchard
    Henk A. Dijkstra
    [J]. Ocean Dynamics, 2008, 58 : 237 - 246
  • [8] MATHEMATICAL-MODELS FOR ADJUSTING LOCAL EQUILIBRIUM ON BINARY PHASE BOUNDARIES
    STROBEL, H
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1981, 262 (04): : 691 - 701
  • [9] On the mathematical stability of stratified flow models with local turbulence closure schemes
    Deleersnijder, Eric
    Hanert, Emmanuel
    Burchard, Hans
    Dijkstra, Henk A.
    [J]. OCEAN DYNAMICS, 2008, 58 (3-4) : 237 - 246
  • [10] Non-local mathematical models for aggregation processes in dispersive media
    Yegenova, A.
    Sultanov, M.
    Balabekov, B. Ch
    Umarova, Zh R.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2022, 113 (01): : 70 - 77