Articulated Motion Discovery using Pairs of Trajectories

被引:0
|
作者
Del Pero, Luca [1 ]
Ricco, Susanna [2 ]
Sukthankar, Rahul [2 ]
Ferrari, Vittorio [1 ]
机构
[1] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland
[2] Google Res, Mountain View, CA USA
关键词
RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an unsupervised approach for discovering characteristic motion patterns in videos of highly articulated objects performing natural, unscripted behaviors, such as tigers in the wild. We discover consistent patterns in a bottom-up manner by analyzing the relative displacements of large numbers of ordered trajectory pairs through time, such that each trajectory is attached to a different moving part on the object. The pairs of trajectories descriptor relies entirely on motion and is more discriminative than state-of-the-art features that employ single trajectories. Our method generates temporal video intervals, each automatically trimmed to one instance of the discovered behavior, and clusters them by type (e.g., running, turning head, drinking water). We present experiments on two datasets: dogs from YouTube-Objects and a new dataset of National Geographic tiger videos. Results confirm that our proposed descriptor outperforms existing appearance- and trajectory-based descriptors (e.g., HOG and DTFs) on both datasets and enables us to segment unconstrained animal video into intervals containing single behaviors.
引用
收藏
页码:2151 / 2160
页数:10
相关论文
共 50 条
  • [1] Long-Range Motion Trajectories Extraction of Articulated Human Using Mesh Evolution
    Wu, Yuanyuan
    He, Xiaohai
    Kang, Byeongkeun
    Song, Haiying
    Nguyen, Truong Q.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (04) : 507 - 511
  • [2] Dynamic motion imitation of two articulated systems using nonlinear time scaling of joint trajectories
    Munirathinam, Karthick
    Sakka, Sophie
    Chevallereau, Christine
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 3700 - 3705
  • [3] 3D motion estimation for articulated human templates using a sequence of stereoscopic image pairs
    Weik, S
    Niemeyer, O
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1237 - 1246
  • [4] Articulated motion segmentation using RANSAC with priors
    Yan, Jingyu
    Pollefeys, Marc
    [J]. DYNAMICAL VISION, 2007, 4358 : 75 - +
  • [5] Multicamera Tracking of Articulated Human Motion Using Shape and Motion Cues
    Sundaresan, Aravind
    Chellappa, Rama
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (09) : 2114 - 2126
  • [6] Articulated Human Motion Capturing Using an Evolutionary Algorithm
    Back, Kristine
    Mesa, Pilar Hernandez
    Diebold, Maximilian
    Leon, Fernando Puente
    [J]. TM-TECHNISCHES MESSEN, 2013, 80 (10) : 335 - 342
  • [7] Analyzing articulated motion using expectation-maximization
    Rowley, HA
    Rehg, JM
    [J]. 1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 935 - 941
  • [8] Estimation and tracking of articulated motion using geometric algebra
    Sajeewa, HUGS
    Lasenby, J
    [J]. ALGEBRAIC FRAMES FOR THE PERCEPTION-ACTION CYCLE, PROCEEDINGS, 2000, 1888 : 197 - 207
  • [9] Tracking articulated motion using a mixture of autoregressive models
    Agarwal, A
    Triggs, B
    [J]. COMPUTER VISION - ECCV 2004, PT 3, 2004, 3023 : 54 - 65
  • [10] Articulated robot motion planning using ant colony optimisation
    Mohamad, Mohd Murtadha
    Taylor, Nicholas K.
    Dunnigan, Matthew W.
    [J]. 2006 3RD INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2006, : 677 - 682