Hit-invariants and commutators for Hopf algebras

被引:0
|
作者
Cohen, Miriam [1 ]
Westreich, Sara [2 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
[2] Bar Ilan Univ, Dept Management, Ramat Gan, Israel
关键词
Normal left coideal subalgebras; left kernels; commutators; commutator algebra; Drinfeld map; CHARACTER TABLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue studying normal left coideal subalgebras of a Hopf algebra H, realizing them as invariants of H under the left hit action of Hopf subalgebras of H*. We apply this realization to test an equivalence relation on irreducible characters for two important examples. The commutator sublagebra of H, which is the analogue of the commutator subgroup of a group and the image of the Drinfeld map for quasitriangular Hopf algebras. We end with the example H = D(kS(3)) where commutators are computed.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 50 条
  • [1] Invariants of Hopf algebras
    Artamonov, VA
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (04): : 45 - 49
  • [2] Invariants of finite Hopf algebras
    Skryabin, S
    [J]. ADVANCES IN MATHEMATICS, 2004, 183 (02) : 209 - 239
  • [3] On actions of Hopf algebras on commutative algebras and their invariants
    Tyc A.
    [J]. Annali dell’Università di Ferrara, 2005, 51 (1): : 99 - 103
  • [4] DEFORMED COMMUTATORS ON COMODULE ALGEBRAS OVER COQUASITRIANGULAR HOPF ALGEBRAS
    Wang, Zhongwei
    Zhang, Guoyin
    Zhang, Liangyun
    [J]. COLLOQUIUM MATHEMATICUM, 2015, 139 (02) : 165 - 183
  • [5] Hopf algebras and invariants of the Johnson cokernel
    Conant, Jim
    Kassabov, Martin
    [J]. Algebraic and Geometric Topology, 2016, 16 (04): : 2325 - 2363
  • [6] Geometrically reductive Hopf algebras and their invariants
    Kalniuk, Marta
    Tyc, Andrzej
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (04) : 1344 - 1363
  • [7] Finitely generated invariants of Hopf algebras on free associative algebras
    Ferreira, Vitor O.
    Murakami, Lucia S. I.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (01) : 70 - 78
  • [8] Complete invariants for complex semisimple Hopf algebras
    Datt, S
    Kodiyalam, V
    Sunder, VS
    [J]. MATHEMATICAL RESEARCH LETTERS, 2003, 10 (5-6) : 571 - 586
  • [9] Separating invariants for Hopf algebras of small dimensions
    Samuel, Preena
    [J]. MATHEMATICAL RESEARCH LETTERS, 2020, 27 (02) : 551 - 563
  • [10] Semi-invariants of actions of multiplier Hopf algebras
    Delvaux, L
    Van Daele, A
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (04) : 1701 - 1716