Autonomous visual navigation of unmanned aerial vehicle for wind turbine inspection

被引:0
|
作者
Stokkeland, Martin [1 ]
Klausen, Kristian [1 ]
Johansen, Tor A. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, Ctr Autonomous Marine Operat & Syst AMOS, Trondheim, Norway
关键词
SERVO CONTROL;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
An autonomous machine vision module for Unmanned Aerial Vehicle (UAV) navigation for inspection of wind turbines is presented. The system estimates the relative position and distance between the UAV and the wind turbine, as well as the position of its blades, in order to support the initial phase of autonomous inspection before the UAV start to move along the blades to acquire pictures. The key algorithms used are Hough transform for detection of the wind turbine tower, hub and blades, as well as the Kalman filter for tracking. Experimental data acquired by a UAV at a wind park is used to evaluate the accuracy and robustness of recognition and navigation. It is found that under the tested conditions, the method gives sufficient accuracy for the task and can execute in real time on a single board computer in the UAV.
引用
收藏
页码:998 / 1007
页数:10
相关论文
共 50 条
  • [1] Research on Visual Autonomous Navigation Indoor for Unmanned Aerial Vehicle
    张洋
    吕强
    林辉灿
    马建业
    [J]. Journal of Shanghai Jiaotong University(Science), 2017, 22 (02) : 252 - 256
  • [2] Research on visual autonomous navigation indoor for unmanned aerial vehicle
    Zhang Y.
    Lü Q.
    Lin H.
    Ma J.
    [J]. Journal of Shanghai Jiaotong University (Science), 2017, 22 (2) : 252 - 256
  • [3] Autonomous Wind-Turbine Blade Inspection Using LiDAR-Equipped Unmanned Aerial Vehicle
    Car, Marko
    Markovic, Lovro
    Ivanovic, Antun
    Orsag, Matko
    Bogdan, Stjepan
    [J]. IEEE ACCESS, 2020, 8 (08): : 131380 - 131387
  • [4] Autonomous Tracking and Navigation Controller for an Unmanned Aerial Vehicle Based on Visual Data for Inspection of Oil and Gas Pipelines
    Shukla, Amit
    Huang Xiaoqian
    Karki, Hamad
    [J]. 2016 16TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2016, : 194 - 200
  • [5] Visual-based Autonomous Unmanned Aerial Vehicle for Inspection in Indoor Environments
    Grando, Ricardo B.
    Pinheiro, Pedro M.
    Bortoluzzi, Nicolas P.
    da Silva, Cesar B.
    Zauk, Otavio F.
    Pineiro, Mariana O.
    Aoki, Vivian M.
    Kelbouscas, Andre L. S.
    Lima, Ylanna B.
    Drews-Jr, Paulo L. J.
    Neto, Armando A.
    [J]. 2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, : 353 - 358
  • [6] Autonomous Ultrasonic Inspection Using Unmanned Aerial Vehicle
    Zhang, Dayi
    Watson, Robert
    Dobie, Gordon
    MacLeod, Charles
    Pierce, Gareth
    [J]. 2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [7] Unmanned Aerial Vehicle for Wind-Turbine Inspection. Next Step: Offshore
    Dias, A.
    Almeida, J.
    Oliveira, A.
    Santos, T.
    Martins, A.
    Silva, E.
    [J]. 2022 OCEANS HAMPTON ROADS, 2022,
  • [8] Sensor fusion for navigation of an autonomous unmanned aerial vehicle
    Sasiadek, JZ
    Hartana, P
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 4029 - 4034
  • [9] Semi-Autonomous Visual Inspection of Vessels Assisted by an Unmanned Micro Aerial Vehicle
    Bonnin-Pascual, Francisco
    Garcia-Fidalgo, Emilio
    Ortiz, Alberto
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 3955 - 3961
  • [10] Unmanned aerial vehicle navigation in underground structure inspection: A review
    Zhang, Ran
    Hao, Guangbo
    Zhang, Kong
    Li, Zili
    [J]. GEOLOGICAL JOURNAL, 2023, 58 (06) : 2454 - 2472