Assessing the functional structure of genomic data

被引:12
|
作者
Huttenhower, C. [1 ,2 ]
Troyanskaya, O. G. [1 ,2 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[2] Princeton Univ, Lewis Sigler Inst Integrat Genom, Carl Icahn Lab, Princeton, NJ 08544 USA
关键词
D O I
10.1093/bioinformatics/btn160
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The availability of genome-scale data has enabled an abundance of novel analysis techniques for investigating a variety of systems-level biological relationships. As thousands of such datasets become available, they provide an opportunity to study high-level associations between cellular pathways and processes. This also allows the exploration of shared functional enrichments between diverse biological datasets, and it serves to direct experimenters to areas of low data coverage or with high probability of new discoveries. Results: We analyze the functional structure of Saccharomyces cerevisiae datasets from over 950 publications in the context of over 140 biological processes. This includes a coverage analysis of biological processes given current high-throughput data, a data-driven map of associations between processes, and a measure of similar functional activity between genome-scale datasets. This uncovers subtle gene expression similarities in three otherwise disparate microarray datasets due to a shared strain background. We also provide several means of predicting areas of yeast biology likely to benefit from additional high-throughput experimental screens.
引用
收藏
页码:I330 / I338
页数:9
相关论文
共 50 条
  • [1] Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophilagenome
    Casey M Bergman
    Barret D Pfeiffer
    Diego E Rincón-Limas
    Roger A Hoskins
    Andreas Gnirke
    Chris J Mungall
    Adrienne M Wang
    Brent Kronmiller
    Joanne Pacleb
    Soo Park
    Mark Stapleton
    Kenneth Wan
    Reed A George
    Pieter J de Jong
    Juan Botas
    Gerald M Rubin
    Susan E Celniker
    [J]. Genome Biology, 3 (12):
  • [2] Exploiting the Functional and Taxonomic Structure of Genomic Data by Probabilistic Topic Modeling
    Chen, Xin
    Hu, Xiaohua
    Lim, Tze Y.
    Shen, Xiajiong
    Park, E. K.
    Rosen, Gail L.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (04) : 980 - 991
  • [3] ON ASSESSING BIOEQUIVALENCE USING GENOMIC DATA WITH MODEL MISSPECIFICATION
    Lu, Qingshu
    Tse, Siu-Keung
    Chow, Shein-Chung
    Yang, Jun
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2009, 19 (04) : 571 - 579
  • [4] Assessing the finite dimensionality of functional data
    Hall, Peter
    Vial, Celine
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 689 - 705
  • [5] Balanced Functional Module Detection in genomic data
    Tritchler, David
    Towle-Miller, Lorin M.
    Miecznikowski, Jeffrey C.
    [J]. BIOINFORMATICS ADVANCES, 2021, 1 (01):
  • [6] Dintor: functional annotation of genomic and proteomic data
    Christian X. Weichenberger
    Hagen Blankenburg
    Antonia Palermo
    Yuri D’Elia
    Eva König
    Erik Bernstein
    Francisco S. Domingues
    [J]. BMC Genomics, 16
  • [7] Functional annotation of genomic data with metabolic inference
    Walzem, R. L.
    [J]. POULTRY SCIENCE, 2006, 85 : 3 - 3
  • [8] Functional annotation of genomic data with metabolic inference
    Walzem, R. L.
    Baillie, R. A.
    Wiest, N.
    Davis, R.
    Watkins, S. M.
    Porter, T. E.
    Simon, J.
    Cogburn, L. A.
    [J]. POULTRY SCIENCE, 2007, 86 (07) : 1510 - 1522
  • [9] New trends in the analysis of functional genomic data
    Montaner, David
    Al-Shahrour, Fatima
    Dopazo, Joaquin
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 576 - 580
  • [10] Dintor: functional annotation of genomic and proteomic data
    Weichenberger, Christian X.
    Blankenburg, Hagen
    Palermo, Antonia
    D'Elia, Yuri
    Koenig, Eva
    Bernstein, Erik
    Domingues, Francisco S.
    [J]. BMC GENOMICS, 2015, 16