Online Approximation of Prediction Intervals Using Artificial Neural Networks

被引:1
|
作者
Hadjicharalambous, Myrianthi [1 ]
Polycarpou, Marios M. [1 ]
Panayiotou, Christos G. [1 ]
机构
[1] Univ Cyprus, Dept Elect & Comp Engn, KIOS Res & Innovat Ctr Excellence, Nicosia, Cyprus
基金
欧盟地平线“2020”;
关键词
Prediction intervals; Lower and upper error bounds; Online learning; Adaptive approximation;
D O I
10.1007/978-3-030-01418-6_56
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction intervals offer a means of assessing the uncertainty of artificial neural networks' point predictions. In this work, we propose a hybrid approach for constructing prediction intervals, combining the Bootstrap method with a direct approximation of lower and upper error bounds. The main objective is to construct high-quality prediction intervals - combining high coverage probability for future observations with small and thus informative interval widths - even when sparse data is available. The approach is extended to adaptive approximation, whereby an online learning scheme is proposed to iteratively update prediction intervals based on recent measurements, requiring a reduced computational cost compared to offline approximation. Our results suggest the potential of the hybrid approach to construct high-coverage prediction intervals, in batch and online approximation, even when data quantity and density are limited. Furthermore, they highlight the need for cautious use and evaluation of the training data to be used for estimating prediction intervals.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 50 条
  • [1] Prediction intervals for artificial neural networks
    Hwang, JTG
    Ding, AA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 748 - 757
  • [2] Early prediction of dropout in online courses using Artificial Neural Networks
    Aguirre Montano, Hermel Santiago
    Carmen Cabrera-Loayza, Ma.
    [J]. 2020 XV CONFERENCIA LATINOAMERICANA DE TECNOLOGIAS DE APRENDIZAJE (LACLO), 2020,
  • [3] Function approximation using artificial neural networks
    Zainuddin, Zarita
    Pauline, Ong
    [J]. APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 140 - +
  • [4] Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
    J.M. Jerez
    L. Franco
    E. Alba
    A. Llombart-Cussac
    A. Lluch
    N. Ribelles
    B. Munárriz
    M. Martín
    [J]. Breast Cancer Research and Treatment, 2005, 94 : 265 - 272
  • [5] Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks
    Jerez, JM
    Franco, L
    Alba, E
    Llombart-Cussac, A
    Lluch, A
    Ribelles, N
    Munárriz, B
    Martín, M
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2005, 94 (03) : 265 - 272
  • [6] Force field approximation using artificial neural networks
    Day, RO
    Lamont, GB
    [J]. CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1020 - 1027
  • [7] Online Prediction of Onsets of Seizure-like Events in Hippocampal Neural Networks Using Wavelet Artificial Neural Networks
    Alan W. L. Chiu
    Eunji E. Kang
    Miron Derchansky
    Peter L. Carlen
    Berj L. Bardakjian
    [J]. Annals of Biomedical Engineering, 2006, 34 : 282 - 294
  • [8] Online prediction of onsets of seizure-like events in hippocampal neural networks using wavelet artificial neural networks
    Chiu, AWL
    Kang, EE
    Derchansky, M
    Carlen, PL
    Bardakjian, BL
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2006, 34 (02) : 282 - 294
  • [9] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    [J]. COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [10] Prediction Intervals for Electricity Load Forecasting Using Neural Networks
    Rana, Mashud
    Koprinska, Irena
    Khosravi, Abbas
    Agelidis, Vassilios G.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,