Fluorescence-Labeled Immunomicelles: Preparation, in vivo Biodistribution, and Ability to Cross the Blood-Brain Barrier

被引:12
|
作者
Yue, Jun [1 ,2 ]
Liu, Shi [1 ]
Wang, Rui [1 ,2 ]
Hu, Xiuli [1 ]
Xie, Zhigang [1 ]
Huang, Yubin [1 ]
Jing, Xiabin [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
biodegradable; biodistribution; blood-brain barrier; micelles; OX26; AMPHIPHILIC BLOCK-COPOLYMERS; DRUG-DELIVERY; TRANSFERRIN RECEPTOR; MONOCLONAL-ANTIBODY; GENE-EXPRESSION; P-GLYCOPROTEIN; CANCER-THERAPY; NANOPARTICLES; TRANSPORTERS; TUMORS;
D O I
10.1002/mabi.201200037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multifunctional hybrid micelles are prepared from amphiphilic mal-PEG-b-PLA and mPEG-b-P(LA-co-DHC/RhB) block copolymers. A specific anti-transferrin receptor antibody, OX26, is linked onto the surface of the micelles. ELISA indicates that the conjugated antibody preserves its activity. OX26 conjugation can increase the uptake efficiency of micelles by target cell lines (C6). Pharmacokinetics and in vivo biodistribution experiments are carried out to investigate the ability of OX26-conjugated micelles (immunomicelles) to cross the bloodbrain barrier. The data show that the brain uptake of OX26-conjugated micelles is much more than that of OX26-free ones. Therefore, OX26-conjugated micelles will be promising drug carriers to cross the blood-brain barrier.
引用
收藏
页码:1209 / 1219
页数:11
相关论文
共 50 条
  • [1] The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study
    Betzer, Oshra
    Shilo, Malka
    Opochinsky, Renana
    Barnoy, Eran
    Motiei, Menachem
    Okun, Eitan
    Yadid, Gal
    Popovtzer, Rachela
    NANOMEDICINE, 2017, 12 (13) : 1533 - 1546
  • [2] Ability of nitrobenzylthioinosine to cross the blood-brain barrier in rats
    Anderson, CM
    Sitar, DS
    Parkinson, FE
    NEUROSCIENCE LETTERS, 1996, 219 (03) : 191 - 194
  • [3] PREPARATION OF FLUORESCENCE-LABELED AND CROSS-LINKED SUBTILISIN
    TANIZAWA, K
    MANO, T
    KANAOKA, Y
    CHEMICAL & PHARMACEUTICAL BULLETIN, 1990, 38 (02) : 464 - 466
  • [4] Tryptophan carbon dots and their ability to cross the blood-brain barrier
    Mintz, Keenan J.
    Mercado, Guillaume
    Zhou, Yiqun
    Ji, Yiwen
    Hettiarachchi, Sajini D.
    Liyanagea, Piumi Y.
    Pandey, Raja R.
    Chusuei, Charles C.
    Dallman, Julia
    Leblanc, Roger M.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 176 : 488 - 493
  • [5] Blood-to-Retina Transport of Fluorescence-Labeled Verapamil at the Blood-Retinal Barrier
    Yoshiyuki Kubo
    Ayumi Nakazawa
    Shin-ichi Akanuma
    Ken-ichi Hosoya
    Pharmaceutical Research, 2018, 35
  • [6] Blood-to-Retina Transport of Fluorescence-Labeled Verapamil at the Blood-Retinal Barrier
    Kubo, Yoshiyuki
    Nakazawa, Ayumi
    Akanuma, Shin-ichi
    Hosoya, Ken-ichi
    PHARMACEUTICAL RESEARCH, 2018, 35 (05)
  • [7] Blood-brain barrier Part III: Therapeutic approaches to cross the blood-brain barrier and target the brain
    Weiss, N.
    Miller, F.
    Cazaubon, S.
    Couraud, P. -O.
    REVUE NEUROLOGIQUE, 2010, 166 (03) : 284 - 288
  • [8] An In Vivo Blood-brain Barrier Permeability Assay in Mice Using Fluorescently Labeled Tracers
    Devraj, Kavi
    Guerit, Sylvaine
    Macas, Jakranka
    Reiss, Yvonne
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (132):
  • [9] Fluorescence imaging of blood-brain barrier disruption
    Hawkins, BT
    Egleton, RD
    JOURNAL OF NEUROSCIENCE METHODS, 2006, 151 (02) : 262 - 267
  • [10] An in vivo model of the human blood-brain barrier
    Dallasta, LM
    Sanders, VJ
    Maguire, JL
    Randall, KA
    Achim, CL
    Wiley, CA
    FASEB JOURNAL, 1998, 12 (05): : A668 - A668