Arithmetic Garbling from Bilinear Maps

被引:1
|
作者
Fleischhacker, Nils [1 ]
Malavolta, Giulio [2 ]
Schroeder, Dominique [3 ]
机构
[1] Ruhr Univ Bochum, Bochum, Germany
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen, Germany
来源
关键词
FUNCTIONAL ENCRYPTION; PREDICATE ENCRYPTION; CIPHERTEXTS;
D O I
10.1007/978-3-030-29962-0_9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of garbling arithmetic circuits and present a garbling scheme for inner-product predicates over exponentially large fields. Our construction stems from a generic transformation from predicate encryption which makes only blackbox calls to the underlying primitive. The resulting garbling scheme has practical efficiency and can be used as a garbling gadget to securely compute common arithmetic subroutines. We also show that inner-product predicates are complete by generically bootstrapping our construction to arithmetic garbling for polynomial-size circuits, albeit with a loss of concrete efficiency. In the process of instantiating our construction we propose two new predicate encryption schemes, which might be of independent interest. More specifically, we construct (i) the first pairing-free (weakly) attribute-hiding non-zero inner-product predicate encryption scheme, and (ii) a key-homomorphic encryption scheme for linear functions from bilinear maps. Both schemes feature constant-size keys and practical efficiency.
引用
收藏
页码:172 / 192
页数:21
相关论文
共 50 条
  • [1] Garbling Gadgets for Boolean and Arithmetic Circuits
    Ball, Marshall
    Malkin, Tal
    Rosulek, Mike
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 565 - 577
  • [2] Statistical ZAPR Arguments from Bilinear Maps
    Lombardi, Alex
    Vaikuntanathan, Vinod
    Wichs, Daniel
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 : 620 - 641
  • [3] A secure signature scheme from bilinear maps
    Boneh, D
    Mironov, I
    Shoup, V
    [J]. TOPICS IN CRYPTOLOGY - CT-RSA 2003, PROCEEDINGS, 2003, 2612 : 98 - 110
  • [4] NOTE ON THE ARITHMETIC OF BILINEAR TRANSFORMATIONS
    ADELMAN, DM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (04) : 443 - 448
  • [5] On orthosymmetric bilinear maps
    Fethi Ben Amor
    [J]. Positivity, 2010, 14 : 123 - 134
  • [6] Growth of bilinear maps
    Bui, Vuong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 624 : 198 - 213
  • [7] Bilinear maps and graphs
    Calderon Martin, Antonio J.
    Navarro Izquierdo, Francisco J.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 263 : 69 - 78
  • [8] On extensions of bilinear maps
    Kubrusly, Carlos S.
    [J]. MATHEMATICA SLOVACA, 2022, 72 (04) : 959 - 968
  • [9] On orthosymmetric bilinear maps
    Ben Amor, Fethi
    [J]. POSITIVITY, 2010, 14 (01) : 123 - 134
  • [10] Yet Another Sanitizable Signature from Bilinear Maps
    Izu, Tetsuya
    Kunihiro, Noboru
    Ohta, Kazuo
    Sano, Makoto
    Takenaka, Masahiko
    [J]. 2009 INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY, AND SECURITY (ARES), VOLS 1 AND 2, 2009, : 941 - +