Hessenberg Varieties for the Minimal Nilpotent Orbit

被引:3
|
作者
Abe, Hiraku [1 ,2 ]
Crooks, Peter [3 ]
机构
[1] Osaka City Univ, Math Inst, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
[2] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[3] Leibniz Univ Hannover, Inst Differential Geometry, Welfengarten 1, D-30167 Hannover, Germany
关键词
minimal nilpotent orbit; Hessenberg variety; equivariant cohomology; EQUIVARIANT COHOMOLOGY RINGS; S-1-EQUIVARIANT COHOMOLOGY; PETERSON VARIETIES; REPRESENTATIONS; FORMULA; IDEALS;
D O I
10.4310/PAMQ.2016.v12.n2.a1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected, simply-connected complex simple algebraic group G, we examine a class of Hessenberg varieties associated with the minimal nilpotent orbit. In particular, we compute the Poincare polynomials and irreducible components of these varieties in Lie type A. Furthermore, we show these Hessenberg varieties to be GKM with respect to the action of a maximal torus T.G. The corresponding GKM graphs are then explicitly determined. Finally, we present the ordinary and T-equivariant cohomology rings of our varieties as quotients of those of the flag variety.
引用
收藏
页码:183 / 223
页数:41
相关论文
共 50 条
  • [1] On singularity and normality of regular nilpotent Hessenberg varieties
    Abe, Hiraku
    Insko, Erik
    [J]. JOURNAL OF ALGEBRA, 2024, 651 : 70 - 110
  • [2] Projections of the minimal nilpotent orbit in a simple Lie algebra and secant varieties
    Panyushev, Dmitri
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 175 (03) : 595 - 624
  • [3] A filtration on the cohomology rings of regular nilpotent Hessenberg varieties
    Megumi Harada
    Tatsuya Horiguchi
    Satoshi Murai
    Martha Precup
    Julianna Tymoczko
    [J]. Mathematische Zeitschrift, 2021, 298 : 1345 - 1382
  • [4] A filtration on the cohomology rings of regular nilpotent Hessenberg varieties
    Harada, Megumi
    Horiguchi, Tatsuya
    Murai, Satoshi
    Precup, Martha
    Tymoczko, Julianna
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1345 - 1382
  • [5] Hessenberg varieties associated to ad-nilpotent ideals
    Ji, Caleb
    Precup, Martha
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (04) : 1728 - 1749
  • [6] Orbit spaces for torus actions on Hessenberg varieties
    Cherepanov, V. V.
    [J]. SBORNIK MATHEMATICS, 2021, 212 (12) : 1765 - 1784
  • [7] Dimension of a minimal nilpotent orbit
    Wang, WQ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) : 935 - 936
  • [8] Cohomology of the Minimal Nilpotent Orbit
    Daniel Juteau
    [J]. Transformation Groups, 2008, 13
  • [9] AN ADDITIVE BASIS FOR THE COHOMOLOGY RINGS OF REGULAR NILPOTENT HESSENBERG VARIETIES
    MAKOTO ENOKIZONO
    TATSUYA HORIGUCHI
    TAKAHIRO NAGAOKA
    AKIYOSHI TSUCHIYA
    [J]. Transformation Groups, 2023, 28 : 695 - 732
  • [10] Cohomology of the minimal nilpotent orbit
    Juteau, Daniel
    [J]. TRANSFORMATION GROUPS, 2008, 13 (02) : 355 - 387