Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization

被引:11
|
作者
Ni, Jiahua [1 ]
Frandsen, Christine J. [2 ]
Noh, Kunbae [2 ]
Johnston, Gary W. [2 ]
He, Guo [1 ]
Tang, Tingting [3 ]
Jin, Sungho [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Shanghai Jiao Tong Univ, Sch Med, Shanghai Key Lab Orthopaed Implant, Shanghai Peoples Hosp 9, Shanghai 200011, Peoples R China
关键词
TiO2; nanotube; CoCr alloy; Anodization; Next-generation orthopedic implant; TITANIA NANOTUBES; BIOMATERIALS; TOPOGRAPHY; ADHESION; OXIDE;
D O I
10.1016/j.msec.2012.12.068
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 degrees C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 degrees C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1460 / 1466
页数:7
相关论文
共 50 条
  • [1] Mechanical alloying of biocompatible Co-28Cr-6Mo alloy
    Sanchez-De Jesus, F.
    Bolarin-Miro, A. M.
    Torres-Villasenor, G.
    Cortes-Escobedo, C. A.
    Betancourt-Cantera, J. A.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (07) : 2021 - 2026
  • [2] Fabrication of multi-sectional TiO2 nanotube arrays by anodization
    Li ShiQi
    Yin JianBo
    Zhang GengMin
    SCIENCE CHINA-CHEMISTRY, 2010, 53 (05) : 1068 - 1073
  • [3] Fabrication of multi-sectional TiO2 nanotube arrays by anodization
    LI ShiQi
    Science China(Chemistry) , 2010, (05) : 1067 - 1072
  • [4] Fabrication of TiO2 Nanotube Arrays by Rectified Alternating Current Anodization
    Han Song
    Jing Shang
    Chen Suo
    Journal of Materials Science & Technology, 2015, 31 (01) : 23 - 29
  • [5] Fabrication of multi-sectional TiO2 nanotube arrays by anodization
    ShiQi Li
    JianBo Yin
    GengMin Zhang
    Science China Chemistry, 2010, 53 : 1068 - 1073
  • [6] Fabrication of TiO2 Nanotube Arrays by Rectified Alternating Current Anodization
    Song, Han
    Shang, Jing
    Suo, Chen
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2015, 31 (01) : 23 - 29
  • [7] TiO2 Nanotube Arrays Fabricated by Anodization
    Wang Daoai
    Liu Ying
    Wang Chengwei
    Zhou Feng
    PROGRESS IN CHEMISTRY, 2010, 22 (06) : 1035 - 1043
  • [8] Metal injection molding of Co-28Cr-6Mo
    Johnson, John L.
    Heaney, Donald F.
    MEDICAL DEVICE MATERIALS III: PROCEEDINGS FROM THE MATERIALS & PROCESSES FOR MEDICAL DEVICES CONFERENCE 2005, 2006, : 99 - +
  • [9] Bipolar anodization enables the fabrication of controlled arrays of TiO2 nanotube gradients
    Loget, G.
    So, S.
    Hahn, R.
    Schmuki, P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (42) : 17740 - 17745
  • [10] Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization
    Chen, Xiaobo
    Schriver, Maria
    Suen, Timothy
    Mao, Samuel S.
    THIN SOLID FILMS, 2007, 515 (24) : 8511 - 8514