Estimates for L1 vector fields under higher-order differential conditions

被引:0
|
作者
Van Schaftingen, Jean [1 ]
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
Critical Sobolev spaces; compensation; Sobolev inequality; Korn-Sobolev inequality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that an L(1) vector field whose components satisfy some condition on k-th order derivatives induce linear functionals on the Sobolev space W(1,n)(R(n)). Two proofs are provided, relying on the two distinct methods developed by Bourgain and Brezis (J. Eur. Math. Soc., 2007) and by the author (C. R. Math. Acad. Sci. Paris, 2004) to prove the same result for divergence-free vector fields and partial extensions to higher-order conditions.
引用
收藏
页码:867 / 882
页数:16
相关论文
共 50 条
  • [1] Multiscale higher-order TV operators for L1 regularization
    Sanders, Toby
    Platte, Rodrigo B.
    [J]. ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2018, 4
  • [2] LOCAL L1 ESTIMATES FOR ELLIPTIC SYSTEMS OF COMPLEX VECTOR FIELDS
    Hounie, J.
    Picon, T.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (04) : 1501 - 1514
  • [3] Hardy space estimates for higher-order differential operators
    Strzelecki, P
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (03) : 1447 - 1461
  • [4] On higher-order differential equations over Hardy fields
    Ramayyan, A
    Thandapani, E
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (07): : 887 - 895
  • [5] L1 Analysis of LTI Systems via Piecewise Higher-Order Approximation
    Choi, Yong Woo
    Kim, Jung Hoon
    Hagiwara, Tomomichi
    [J]. 2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1410 - 1415
  • [6] Estimates for distribution of suprema of solutions to higher-order partial differential equations with random initial conditions
    Kozachenko, Yuriy
    Orsingher, Enzo
    Sakhno, Lyudmyla
    Vasylyk, Olga
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2020, 7 (01): : 79 - 96
  • [7] L3/2-estimates of vector fields with L1 curl in a bounded domain
    Xingfei Xiang
    [J]. Calculus of Variations and Partial Differential Equations, 2013, 46 : 55 - 74
  • [9] Estimates for L1-vector fields
    Van Schaftingen, J
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (03) : 181 - 186
  • [10] Higher-order efficiency conditions for constrained vector equilibrium problems
    Van Su, Tran
    Luu, Do Van
    [J]. OPTIMIZATION, 2022, 71 (09) : 2613 - 2642