Phase-field crystal modeling of anisotropic material systems of arbitrary Poisson's ratio

被引:14
|
作者
Choudhary, Muhammad Ajmal [1 ]
Kundin, Julia [1 ]
Emmerich, Heike [1 ]
机构
[1] Univ Bayreuth, Lehrstuhl Mat & Prozesssimulat, D-95440 Bayreuth, Germany
关键词
phase-field crystal; Poisson's ratio; elasticity; anisotropy; atomistic simulation;
D O I
10.1080/09500839.2012.686173
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, we derived a generalized model for isotropic as well as anisotropic crystal lattice systems of arbitrary Poisson's ratio within the framework of the continuum phase-field crystal (PFC) approach [R. Prieler, J. Hubert, D. Li, B. Verleye, R. Haberkern, H. Emmerich, J. Phys.: Condens. Matter 21 (2009) p. 464110] and showed how its parameters can be derived from classical density functional theory [M. A. Choudhary, D. Li, H. Emmerich and H. Lowen, J. Phys.: Condens. Matter 23 (2011) p. 265005]. Here, we present a general procedure to model anisotropic material systems of arbitrary Poisson's ratios. In that way we can for the first time identify PFC solutions of arbitrary Poisson's ratios and thereby extend the applicability of the PFC method to a larger class of material systems.
引用
收藏
页码:451 / 458
页数:8
相关论文
共 50 条
  • [1] Bridging the phase-field and phase-field crystal approaches for anisotropic material systems
    J. Kundin
    M.A. Choudhary
    H. Emmerich
    [J]. The European Physical Journal Special Topics, 2014, 223 : 363 - 372
  • [2] Bridging the phase-field and phase-field crystal approaches for anisotropic material systems
    Kundin, J.
    Choudhary, M. A.
    Emmerich, H.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (03): : 363 - 372
  • [3] Phase-field theory of edges in an anisotropic crystal
    Wheeler, A. A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2075): : 3363 - 3384
  • [4] Phase-Field Modeling Fracture in Anisotropic Materials
    Li, Haifeng
    Wang, Wei
    Cao, Yajun
    Liu, Shifan
    [J]. ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [5] Phase-field modeling of two-dimensional crystal growth with anisotropic diffusion
    Meca, Esteban
    Shenoy, Vivek B.
    Lowengrub, John
    [J]. PHYSICAL REVIEW E, 2013, 88 (05):
  • [6] A note on a phase-field model for anisotropic systems
    Lussardi, Luca
    [J]. ASYMPTOTIC ANALYSIS, 2015, 94 (3-4) : 241 - 254
  • [7] Phase-Field Modeling of Nonlinear Material Behavior
    Pellegrini, Y. -P.
    Denoual, C.
    Truskinovsky, L.
    [J]. IUTAM SYMPOSIUM ON VARIATIONAL CONCEPTS WITH APPLICATIONS TO THE MECHANICS OF MATERIALS, 2010, 21 : 209 - +
  • [8] On phase-field modeling with a highly anisotropic interfacial energy
    Fleck, M.
    Mushongera, L.
    Pilipenko, D.
    Ankit, K.
    Emmerich, H.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (10): : 1 - 11
  • [9] Application of the anisotropic phase-field crystal model to investigate the lattice systems of different anisotropic parameters and orientations
    Kundin, Julia
    Choudhary, Muhammad Ajmal
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2017, 25 (05)
  • [10] On phase-field modeling with a highly anisotropic interfacial energy
    M. Fleck
    L. Mushongera
    D. Pilipenko
    K. Ankit
    H. Emmerich
    [J]. The European Physical Journal Plus, 126