Expanding the transfer entropy to identify information circuits in complex systems

被引:63
|
作者
Stramaglia, S. [1 ,2 ]
Wu, Guo-Rong [3 ,4 ]
Pellicoro, M. [1 ,2 ]
Marinazzo, D. [3 ]
机构
[1] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Fis, Bari, Italy
[3] Univ Ghent, Dept Data Anal, Fac Psychol & Educ Sci, B-9000 Ghent, Belgium
[4] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Key Lab NeuroInformat, Minist Educ, Chengdu 610054, Peoples R China
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 06期
关键词
NETWORK MOTIFS;
D O I
10.1103/PhysRevE.86.066211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to the informational circuits present in the system, with an informational character which can be associated to the sign of the contribution. For the sake of computational complexity, we adopt the assumption of Gaussianity and use the corresponding exact formula for the conditional mutual information. We report the application of the proposed methodology on two electroencephalography (EEG) data sets. DOI: 10.1103/PhysRevE.86.066211
引用
收藏
页数:7
相关论文
共 50 条
  • [1] EXPANDING THE TRANSFER ENTROPY TO IDENTIFY INFORMATION SUBGRAPHS IN COMPLEX SYSTEMS
    Stramaglia, S.
    Wu, Guo-Rong
    Pellicoro, M.
    Marinazzo, D.
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 3668 - 3671
  • [2] Kendall transfer entropy: a novel measure for estimating information transfer in complex systems
    Wen, Xin
    Liang, Zhenhu
    Wang, Jing
    Wei, Changwei
    Li, Xiaoli
    [J]. JOURNAL OF NEURAL ENGINEERING, 2023, 20 (04)
  • [3] Information Transfer With Respect to Relative Entropy in Multi-Dimensional Complex Dynamical Systems
    Yin, Yimin
    Zhang, Jing
    Duan, Xiaojun
    [J]. IEEE ACCESS, 2020, 8 : 39464 - 39478
  • [4] Dynamical Shannon entropy and information Tsallis entropy in complex systems
    Yulmetyev, RM
    Emelyanova, NA
    Gafarov, FM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 (1-4) : 649 - 676
  • [5] Kinetics of the dynamical information Shannon entropy for complex systems
    Yulmetyev, RM
    Yulmetyeva, DG
    [J]. ACTA PHYSICA POLONICA B, 1999, 30 (08): : 2511 - 2531
  • [6] Can Transfer Entropy Infer Information Flow in Neuronal Circuits for Cognitive Processing?
    Tehrani-Saleh, Ali
    Adami, Christoph
    [J]. ENTROPY, 2020, 22 (04)
  • [7] Quantifying 'Causality' in Complex Systems: Understanding Transfer Entropy
    Razak, Fatimah Abdul
    Jensen, Henrik Jeldtoft
    [J]. PLOS ONE, 2014, 9 (06):
  • [8] Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle
    Thurner, Stefan
    Corominas-Murtra, Bernat
    Hanel, Rudolf
    [J]. PHYSICAL REVIEW E, 2017, 96 (03):
  • [9] Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle
    Thurner, Stefan
    Corominas-Murtra, Bernat
    Hanel, Rudolf
    [J]. Physical Review E, 2017, 96 (03):
  • [10] Local information transfer as a spatiotemporal filter for complex systems
    Lizier, Joseph T.
    Prokopenko, Mikhail
    Zomaya, Albert Y.
    [J]. PHYSICAL REVIEW E, 2008, 77 (02):