Generalized holomorphic Cartan geometries

被引:6
|
作者
Biswas, Indranil [1 ]
Dumitrescu, Sorin [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Univ Cote Azur, CNRS, LJAD, F-06108 Nice 2, France
关键词
Homogeneous spaces; Cartan geometries; Calabi-Yau manifolds; PROJECTIVE-STRUCTURES; BRANCHED STRUCTURES; BUNDLES; MANIFOLD;
D O I
10.1007/s40879-019-00327-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is largely a survey paper, dealing with Cartan geometries in the complex analytic category. We first remind some standard facts going back to the seminal works of Felix Klein, elie Cartan and Charles Ehresmann. Then we present the concept of abranched holomorphic Cartan geometrywhich was introduced by Biswas and Dumitrescu (Int Math Res Not IMRN,2017. 10.1093/imrn/rny003,). It generalizes to higher dimension the notion of a branched (flat) complex projective structure on a Riemann surface introduced by Mandelbaum. This new framework is much more flexible than that of the usual holomorphic Cartan geometries (e.g. all compact complex projective manifolds admit branched holomorphic projective structures). At the same time, this new definition is rigid enough to enable us to classify branched holomorphic Cartan geometries on compact simply connected Calabi-Yau manifolds.
引用
收藏
页码:661 / 680
页数:20
相关论文
共 50 条
  • [1] Generalized holomorphic Cartan geometries
    Indranil Biswas
    Sorin Dumitrescu
    European Journal of Mathematics, 2020, 6 : 661 - 680
  • [2] Holomorphic Cartan geometries on uniruled surfaces
    McKay, Benjamin
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (15-16) : 893 - 896
  • [3] Killing fields of holomorphic Cartan geometries
    Sorin Dumitrescu
    Monatshefte für Mathematik, 2010, 161 : 145 - 154
  • [4] Killing fields of holomorphic Cartan geometries
    Dumitrescu, Sorin
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (02): : 145 - 154
  • [5] Holomorphic Cartan geometries on complex tori
    Biswas, Indranil
    Dumitrescu, Sorin
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (03) : 316 - 321
  • [6] Deformation theory of holomorphic Cartan geometries
    Biswas, Indranil
    Dumitrescu, Sorin
    Schumacher, Georg
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (03): : 512 - 524
  • [7] Holomorphic Cartan geometries and rational curves
    Biswas, Indranil
    McKay, Benjamin
    COMPLEX MANIFOLDS, 2016, 3 (01): : 145 - 168
  • [8] Deformation theory of holomorphic Cartan geometries, II
    Biswas, Indranil
    Dumitrescu, Sorin
    Schumacher, Georg
    COMPLEX MANIFOLDS, 2022, 9 (01): : 52 - 64
  • [9] Holomorphic Cartan geometries and Calabi-Yau manifolds
    Biswas, Indranil
    McKay, Benjamin
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 661 - 663
  • [10] Branched Holomorphic Cartan Geometries and Calabi-Yau Manifolds
    Biswas, Indranil
    Dumitrescu, Sorin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (23) : 7428 - 7458