The mineralization of [7-C-14]benzo[a]pyrene (BaP) in soil was investigated in response to additions of individual hydrocarbons, defined hydrocarbon mixtures, crude oil, and crude oil fractions. Neither substantial BaP mineralization nor enrichment of BaP degraders occurred in BaP-spiked soil in the absence of a suitable hydrocarbon supplement. Crude oil, the saturated and aromatic class components of crude oil, the distillates heating oil, jet fuel, and diesel fuel supported up to 60% mineralization of 80 mu g [7-C-14]BaP per gram of soil in 40 d. Neither single hydrocarbons nor defined hydrocarbon mixtures containing normal and branched alkanes, alicyclics, and aromatics supported comparable BaP mineralization. Evolution of (CO2)-C-14 occurred after lag periods characteristic to specific petroleum products and their concentrations. Time required for microbial proliferation, hydrocarbon toxicity, and competitive inhibition might have contributed to these lag periods, but the complete inhibition of BaP mineralization by diesel-fuel vapors pointed to a dominant role of competitive inhibition. A lack of radiocarbon incorporation into soil biomass from [7-C-14]BaP indicated that at least the initial steps of BaP biodegradation in soil were cometabolic in nature. Suitable hydrocarbon mixtures not only supported BaP mineralization by serving as primary substrates, but also enhanced BaP bioavailability by dissolving this hydrophobic solid.