Electrical Circuit Modeling Considering a Transient Space Charge for Nonsteady Poisson-Nernst-Planck Equations

被引:3
|
作者
Sugioka, Hideyuki [1 ]
机构
[1] Canon Inc, Frontier Res Ctr, Ota, Tokyo 1468501, Japan
关键词
D O I
10.7566/JPSJ.84.104001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transient space charge phenomena at high step voltages are interesting since they play a central role in many exotic nonequilibrium phenomena of ion dynamics in an electrolyte. However, the fundamental equations [i.e., the nonsteady Poisson-Nernst-Planck (PNP) equations] have not been solved analytically at high applied voltages because of their large nonlinearity. In this study, on the basis of the steady PNP solution, we propose an electrical circuit model that considers transient space charge effects and find that the dc and ac responses of the total charge of the electrical double layer are in fairly good agreement with the numerical results even at large applied voltages. Furthermore, on the basis of this model, we find approximate analytical solutions for the nonsteady PNP equations that are in good agreement with the numerical solutions of the concentration, charge density, and potential distribution at high applied voltages at each time in a surface region.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A multigrid method for the Poisson-Nernst-Planck equations
    Mathur, Sanjay R.
    Murthy, Jayathi Y.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4031 - 4039
  • [2] Steady state solution of the Poisson-Nernst-Planck equations
    Golovnev, A.
    Trimper, S.
    [J]. PHYSICS LETTERS A, 2010, 374 (28) : 2886 - 2889
  • [3] A meshless stochastic method for Poisson-Nernst-Planck equations
    Monteiro, Henrique B. N.
    Tartakovsky, Daniel M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [4] Application of the Poisson-Nernst-Planck equations to the migration test
    Krabbenhoft, K.
    Krabbenhoft, J.
    [J]. CEMENT AND CONCRETE RESEARCH, 2008, 38 (01) : 77 - 88
  • [5] Entropy method for generalized Poisson-Nernst-Planck equations
    Gonzalez Granada, Jose Rodrigo
    Kovtunenko, Victor A.
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 603 - 619
  • [6] Unsteady analytical solutions to the Poisson-Nernst-Planck equations
    Schoenke, Johannes
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (45)
  • [7] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [8] Exact solution of the Poisson-Nernst-Planck equations in the linear regime
    Golovnev, A.
    Trimper, S.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (11):
  • [9] An energy-preserving discretization for the Poisson-Nernst-Planck equations
    Flavell, Allen
    Kabre, Julienne
    Li, Xiaofan
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (02) : 431 - 441
  • [10] A dynamic mass transport method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473