Investigation of the nuclear phase transition using the Landau free-energy approach

被引:11
|
作者
Mabiala, J. [1 ]
Bonasera, A. [1 ,2 ]
Zheng, H. [1 ,3 ]
McIntosh, A. B. [1 ]
May, L. W. [1 ,4 ]
Cammarata, P. [1 ,4 ]
Kohley, Z. [1 ,4 ]
Hagel, K. [1 ]
Heilborn, L. [1 ,4 ]
Raphelt, A. [1 ,4 ]
Souliotis, G. A. [1 ,5 ]
Zarrella, A. [1 ,4 ]
Yennello, S. J. [1 ,4 ]
机构
[1] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA
[2] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95123 Catania, Italy
[3] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[4] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
[5] Natl & Kapodistrian Univ Athens, Dept Chem, Phys Chem Lab, GR-15771 Athens, Greece
来源
PHYSICAL REVIEW C | 2013年 / 87卷 / 01期
关键词
D O I
10.1103/PhysRevC.87.017603
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Fragment yield data have been analyzed using the Landau free energy approach to investigate the critical phenomena of fragmenting quasi-projectiles formed in Zn-64 + Zn-64, Ni-64 + Ni-64, and Zn-70 + Zn-70 reactions at beam energy of 35 MeV/nucleon. Pairing coefficients normalized to the temperature of the fragmenting source (a(p)/T) were extracted from yield data of N = Z fragments in order to correct for odd-even effects in free energy calculations. Plots of fragment free energy (F/T) versus the neutron-proton asymmetry show three minima, indicating the system to be in a first-order phase transition regime. Values of fitting parameters to the Landau free energy equation as well as a(p)/T, which are related to thermodynamic properties of the fragmenting systems, exhibit a dependence on the neutron-proton asymmetry in addition to their dependence on the excitation energy of the fragmenting source. DOI: 10.1103/PhysRevC.87.017603
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Landau free-energy coefficients
    Chen, Long-Qing
    [J]. PHYSICS OF FERROELECTRICS: A MODERN PERSPECTIVE, 2007, 105 : 363 - 371
  • [2] LANDAU FREE-ENERGY AND ORDER PARAMETER BEHAVIOR OF THE ALPHA/BETA PHASE-TRANSITION IN CRISTOBALITE
    SCHMAHL, WW
    SWAINSON, IP
    DOVE, MT
    GRAEMEBARBER, A
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1992, 201 (1-2): : 125 - 145
  • [3] NONLOCAL LANDAU FREE-ENERGY FUNCTIONAL - APPLICATION TO THE MAGNETIC PHASE-TRANSITION IN CSNIF3
    PLUMER, ML
    CAILLE, A
    [J]. PHYSICAL REVIEW B, 1988, 37 (13): : 7712 - 7725
  • [4] THE GINZBURG LANDAU FREE-ENERGY FOR A JOSEPHSON ARRAY
    WEISS, L
    GIOVANNINI, B
    [J]. HELVETICA PHYSICA ACTA, 1982, 55 (04): : 468 - 476
  • [5] GINZBURG-LANDAU FREE-ENERGY IN UNCONVENTIONAL SUPERCONDUCTORS
    PALUMBO, M
    CHOI, CH
    MUZIKAR, P
    [J]. PHYSICA B, 1990, 165 : 1095 - 1096
  • [6] FREE-ENERGY BY LANDAU AND EQUATION OF STATE OF CONDENSED MEDIA
    PROTASOV, ID
    [J]. ZHURNAL FIZICHESKOI KHIMII, 1983, 57 (10): : 2454 - 2459
  • [7] IMPROPER INCOMMENSURATE PHASES - NONANALYTIC LANDAU FREE-ENERGY
    LEVANYUK, AP
    MINYUKOV, SA
    TOLEDANO, P
    ASLANYAN, TA
    [J]. FERROELECTRICS, 1989, 95 : 79 - 85
  • [8] VARIATIONAL DESCRIPTION OF THE NUCLEAR FREE-ENERGY
    FENG, DH
    GILMORE, R
    NARDUCCI, LM
    [J]. PHYSICAL REVIEW C, 1979, 19 (03): : 1119 - 1126
  • [9] A VARIATIONAL APPROACH FOR THE FREE-ENERGY
    FERREIRA, JRF
    SILVA, NP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18): : 6429 - 6434
  • [10] Phase transition between A and B forms of DNA: A free-energy perspective
    Sanyal, Devashish
    [J]. PHYSICAL REVIEW E, 2010, 81 (03):