Non-Abelian Chern-Simons action is topological invariant on 3 simple knot

被引:1
|
作者
Si, T [1 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2137721
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under SU(2) gauge transformation, the non-Abelian Chern-Simons action is invariant on a class of three dimensional manifold-3 simple knot. (c) 2005 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Non-Abelian Chern-Simons vortices
    Antillon, A
    Escalona, J
    German, G
    Torres, M
    WORKSHOPS ON PARTICLES AND FIELDS AND PHENOMENOLOGY OF FUNDAMENTAL INTERACTIONS, 1996, (359): : 479 - 482
  • [2] Non-abelian Chern-Simons vortices
    Lozano, G. S.
    Marques, D.
    Moreno, E. F.
    Schaposnik, F. A.
    PHYSICS LETTERS B, 2007, 654 (1-2) : 27 - 34
  • [3] NON-ABELIAN SU(3) CHERN-SIMONS THEORY
    GUADAGNINI, E
    PILO, L
    PHYSICS LETTERS B, 1993, 319 (1-3) : 139 - 144
  • [4] Chern-Simons coefficient in supersymmetric non-Abelian Chern-Simons Higgs theories
    Kao, HC
    PHYSICAL REVIEW D, 1999, 60 (06):
  • [5] The relativistic non-Abelian Chern-Simons equations
    Yang, YS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 199 - 218
  • [6] The Relativistic non-abelian Chern-Simons Equations
    Yisong Yang
    Communications in Mathematical Physics, 1997, 186 : 199 - 218
  • [7] Knots in the non-abelian Chern-Simons theory
    Zhang, PM
    Duan, YS
    Liu, X
    MODERN PHYSICS LETTERS A, 2004, 19 (35) : 2629 - 2636
  • [8] NON-ABELIAN CHERN-SIMONS PARTICLES AND THEIR QUANTIZATION
    BAK, DS
    JACKIW, R
    PI, SY
    PHYSICAL REVIEW D, 1994, 49 (12): : 6778 - 6786
  • [9] Non-abelian localization for Chern-Simons theory
    Beasley, C
    Witten, E
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2005, 70 (02) : 183 - 323
  • [10] SUPERSYMMETRY AND NON-ABELIAN CHERN-SIMONS SYSTEMS
    NAVRATIL, P
    GEYER, HB
    PHYSICAL REVIEW D, 1994, 49 (02): : 1137 - 1140