A Guass-Newton-like method for inverse eigenvalue problems

被引:5
|
作者
Wang, Zhibo [1 ]
Vong, Seakweng [1 ]
机构
[1] Univ Macau, Dept Math, Taipa, Peoples R China
关键词
inverse eigenvalue problem; the Guass-Newton method; least-square solutions; iterative methods; inverse power method; SINGULAR-VALUE PROBLEMS; CONVERGENCE;
D O I
10.1080/00207160.2012.750721
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a Guass-Newton-like method for finding least-square solutions to inverse eigenvalue problems. We show that the proposed method converges under some mild conditions. In particular, if the method converges to the exact solution, the convergence rate is at least quadratic in the root sense. Numerical examples are given to justify the theoretical result.
引用
收藏
页码:1435 / 1447
页数:13
相关论文
共 50 条