Mortar finite elements for coupling compressible and nearly incompressible materials in elasticity

被引:0
|
作者
Lamichhane, Bishnu P. [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Its Applicat, Inst Math Sci, Canberra, ACT 0200, Australia
关键词
Mortar finite elements; Lagrange multipliers; dual space; non-matching triangulations; mixed formulations; saddle point problems; PLANAR LINEAR ELASTICITY; NONMATCHING GRIDS; STOKES PROBLEM; CONVERGENCE; LOCKING;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the coupling of compressible and nearly incompressible materials within the framework of mortar methods. Taking into account the locking effect, we use a suitable discretization for the nearly incompressible material and work with a standard conforming discretization elsewhere. The coupling of different discretization schemes in different subdomains are handled by flexible mortar techniques. A priori error analysisis carried out for the coupled problem, and several numerical examples are presented. Using dual Lagrange multipliers, the Lagrange multipliers can easily be eliminated by local static condensation.
引用
下载
收藏
页码:177 / 192
页数:16
相关论文
共 50 条
  • [1] Strain smoothing for compressible and nearly-incompressible finite elasticity
    Lee, Chang-Kye
    Mihai, L. Angela
    Hale, Jack S.
    Kerfriden, Pierre
    Bordas, Stephane P. A.
    COMPUTERS & STRUCTURES, 2017, 182 : 540 - 555
  • [2] FINITE-ELEMENTS FOR NEARLY INCOMPRESSIBLE MATERIALS
    PIAN, THH
    LEE, SW
    AIAA JOURNAL, 1976, 14 (06) : 824 - 826
  • [3] A kinematically stabilized linear tetrahedral finite element for compressible and nearly incompressible finite elasticity
    Scovazzi, Guglielmo
    Zorrilla, Ruben
    Rossi, Riccardo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 412
  • [4] Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity
    Brink, U
    Stephan, EP
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (01) : 79 - 92
  • [5] Scaled boundary finite element method for compressible and nearly incompressible elasticity over arbitrary polytopes
    Aladurthi, Lakshmi Narasimha Pramod
    Natarajan, Sundararajan
    Ooi, Ean Tat
    Song, Chongmin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (13) : 1379 - 1394
  • [6] On some mixed finite element methods for incompressible and nearly incompressible finite elasticity
    Brink, U
    Stein, E
    COMPUTATIONAL MECHANICS, 1996, 19 (02) : 105 - 119
  • [8] On finite element formulations for nearly incompressible linear elasticity
    Nakshatrala, K. B.
    Masud, A.
    Hjelmstad, K. D.
    COMPUTATIONAL MECHANICS, 2008, 41 (04) : 547 - 561
  • [9] On finite element formulations for nearly incompressible linear elasticity
    K. B. Nakshatrala
    A. Masud
    K. D. Hjelmstad
    Computational Mechanics, 2008, 41 : 547 - 561
  • [10] A remark on finite element schemes for nearly incompressible elasticity
    Boffi, Daniele
    Stenberg, Rolf
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2047 - 2055