Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene

被引:63
|
作者
Cai, Yijun [1 ,2 ]
Guo, Yongbo [3 ]
Zhou, Yuanguo [3 ]
Huang, Xindong [1 ]
Yang, Guoqing [4 ]
Zhu, Jinfeng [5 ,6 ]
机构
[1] Xiamen Univ Technol, Fujian Prov Key Lab Optoelect Technol & Devices, Xiamen 361024, Peoples R China
[2] Chinese Acad Sci, Inst Microelect, Key Lab Microelect Devices & Integrated Technol, Beijing 100191, Peoples R China
[3] Xian Univ Sci & Technol, Coll Commun & Informat Engn, Xian 710054, Peoples R China
[4] Hangzhou Dianzi Univ, Coll Elect & Informat, Hangzhou 310018, Peoples R China
[5] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[6] Xiamen Univ, Key Lab Electromagnet Wave Sci & Detect Technol, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
BROAD-BAND; WIDE-ANGLE; METAMATERIAL; ABSORPTION; DESIGN; REGIME; LAYER;
D O I
10.1364/OE.409205
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we theoretically design a dual-band graphene-based terahertz (THz) absorber combining the magnetic resonance with a THz cold mirror without any metallic loss. The absorption spectrum of the all-dielectric THz absorber can be actively manipulated after fabrication due to the tunable conductivity of graphene. After delicate optimization, two ultra-narrow absorption peaks are achieved with respective full width at half maximum (FWHM) of 0.0272 THz and 0.0424 THz. Also, we investigate the effect of geometric parameters on the absorption performance. Coupled mode theory (CMT) is conducted on the dual-band spectrum as an analytic method to confirm the validity of numerical results. Furthermore, physical mechanism is deeply revealed with magnetic and electric field distributions, which demonstrate a totally different principle with traditional plasmonic absorber. Our research provides a significant design guide for developing tunable multi-resonant THz devices based on all-dielectric configuration. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:31524 / 31534
页数:11
相关论文
共 50 条
  • [1] Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application
    Li, Zhiren
    Cheng, Yongzhi
    Luo, Hui
    Chen, Fu
    Li, Xiangcheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 925
  • [2] Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application
    Li Z.
    Cheng Y.
    Luo H.
    Chen F.
    Li X.
    Journal of Alloys and Compounds, 2022, 925
  • [3] Dual-Band Perfect Absorber Based on All-Dielectric GaAs Metasurface for Terahertz Wave
    Xiaodi Weng
    Jie Wang
    Changming Xu
    Yongqing Wang
    Yining Liao
    Xuejin Wang
    Plasmonics, 2023, 18 : 521 - 528
  • [4] Dual-Band Perfect Absorber Based on All-Dielectric GaAs Metasurface for Terahertz Wave
    Weng, Xiaodi
    Wang, Jie
    Xu, Changming
    Wang, Yongqing
    Liao, Yining
    Wang, Xuejin
    PLASMONICS, 2023, 18 (02) : 521 - 528
  • [5] Flexible dual-band all-graphene-dielectric terahertz absorber
    Li, Jiu-sheng
    Yan, De-Xian
    Sun, Jian-zhong
    OPTICAL MATERIALS EXPRESS, 2019, 9 (05) : 2067 - 2075
  • [6] Design of a tunable dual-band terahertz absorber based on graphene metamaterial
    Liu, Chunye
    Bai, Yukun
    Ma, Xiurong
    OPTICAL ENGINEERING, 2018, 57 (11)
  • [7] Tunable dual-band absorber based on hybrid Graphene metamaterial in terahertz frequencies
    Yan, Xin
    Liang, Lan-Ju
    Zhang, Zhang
    Ding, Xin
    Yao, Jian-Quan
    AOPC 2017: OPTOELECTRONICS AND MICRO/NANO-OPTICS, 2017, 10460
  • [8] Polarization Insensitive Graphene Based Tunable Metasurface Terahertz Dual-Band Absorber
    Panda, Niten Kumar
    Mohapatra, Sraddhanjali
    Sahu, Sudhakar
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2025, 24 : 34 - 41
  • [9] Dual-band ultrasensitive terahertz sensor based on tunable graphene metamaterial absorber
    Chen, Tao
    Jiang, Weijie
    Yin, Xianhua
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 154
  • [10] Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure
    Luo, Hao
    Cheng, Yongzhi
    OPTICAL MATERIALS, 2019, 96