Towards Polyoxometalate-Cluster-Based Nano-Electronics

被引:67
|
作者
Vila-Nadal, Laia [1 ]
Mitchell, Scott G. [1 ]
Markov, Stanislav [2 ]
Busche, Christoph [1 ]
Georgiev, Vihar [2 ]
Asenov, Asen [2 ]
Cronin, Leroy [1 ]
机构
[1] Univ Glasgow, Sch Chem, WestCHEM, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Dept Elect & Elect Engn, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
nanoelectronics; nanosystems; polyoxometalates; redox-active systems; INDIVIDUALLY DISTINGUISHABLE LABELS; ENVIRONMENTALLY BENIGN TECHNOLOGY; HETEROPOLYTUNGSTATE ANIONS; DAWSON STRUCTURE; FLASH MEMORY; OXIDE; COMPLEXES; OXIDATION; REDUCTION; 18-MOLYBDOPYROPHOSPHATE;
D O I
10.1002/chem.201301631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We explore the concept that the incorporation of polyoxometalates (POMs) into complementary metal oxide semiconductor (CMOS) technologies could offer a fundamentally better way to design and engineer new types of data storage devices, due to the enhanced electronic complementarity with SiO2, high redox potentials, and multiple redox states accessible to polyoxometalate clusters. To explore this we constructed a custom-built simulation domain bridge. Connecting DFT, for the quantum mechanical modelling part, and mesoscopic device modelling, confirms the theoretical basis for the proposed advantages of POMs in non-volatile molecular memories (NVMM) or flash-RAM.
引用
收藏
页码:16502 / 16511
页数:10
相关论文
共 50 条
  • [1] Implication of counter-cations for polyoxometalate-based nano-electronics
    Monakhov, Kirill Yu.
    COMMENTS ON INORGANIC CHEMISTRY, 2024, 44 (01) : 1 - 10
  • [2] THE QUANTUM TRANSISTOR EFFECT - A NEW STEP TOWARDS NANO-ELECTRONICS
    不详
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 1989, 44 (247): : 293 - 295
  • [3] Extension of Micro/Nano-Electronics Technology towards Photonics Education
    Uherek, Frantisek
    Donoval, Daniel
    Chovan, Jozef
    2009 IEEE INTERNATIONAL CONFERENCE ON MICROELECTRONIC SYSTEMS EDUCATION, 2009, : 108 - +
  • [4] Rectifying a problem in nano-electronics
    Earis, P
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (21) : C82 - C82
  • [5] Nano-electronics and spintronics with nanoparticles
    Karmakar, S.
    Kumar, S.
    Rinaldi, R.
    Maruccio, G.
    INTERNATIONAL CONFERENCE ON TRENDS IN SPINTRONICS AND NANOMAGNETISM (TSN 2010), 2011, 292
  • [6] Nano-electronics in biological applications
    Borghs, G
    THERMAL AND MECHANICAL SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS, 2004, : 13 - 13
  • [7] Nano-electronics Challenge Chip Designers meet Real Nano-electronics in 2010s?
    Fujita, Shinobu
    DATE: 2009 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2009, : 431 - 432
  • [8] Advanced fabrication technologies for nano-electronics
    Simmons, JA
    Sherwin, ME
    Weckwerth, MV
    Harff, NE
    Eiles, TM
    Baca, WE
    Hou, H
    Hammons, BE
    PROCEEDINGS OF THE TWENTY-FOURTH STATE-OF-THE-ART-PROGRAM ON COMPOUND SEMICONDUCTORS, 1996, 96 (02): : 186 - 202
  • [9] Technology Evolution of Silicon Nano-Electronics
    Zaima, Shigeaki
    ULSI PROCESS INTEGRATION 6, 2009, 25 (07): : 33 - 47
  • [10] Ultimate nano-electronics: New materials and device concepts for scaling nano-electronics beyond the Si roadmap
    Collaert, N.
    Alian, A.
    Arimura, H.
    Boccardi, G.
    Eneman, G.
    Franco, J.
    Ivanov, Ts.
    Lin, D.
    Loo, R.
    Merckling, C.
    Mitard, J.
    Pourghaderi, M. A.
    Rooyackers, R.
    Sioncke, S.
    Sun, J. W.
    Vandooren, A.
    Veloso, A.
    Verhulst, A.
    Waldron, N.
    Witters, L.
    Zhou, D.
    Barla, K.
    Thean, A. V. -Y.
    MICROELECTRONIC ENGINEERING, 2015, 132 : 218 - 225