A double commutant theorem for Murray-von Neumann algebras

被引:5
|
作者
Liu, Zhe [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
affiliated operators; unbounded operators; OPERATORS; RINGS;
D O I
10.1073/pnas.1203754109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Murray-von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra A of the Murray-von Neumann algebra A(f)(R) associated with a finite von Neumann algebra R is the Murray-von Neumann algebra A(f)(A(0)), where A(0) is a maximal abelian self-adjoint subalgebra of R and, in addition, A(0) is A boolean AND R. We also prove that the Murray-von Neumann algebra A(f)(C) with C the center of R is the center of the Murray-von Neumann algebra A(f)(R). Von Neumann's celebrated double commutant theorem characterizes von Neumann algebras R as those for which R '' = R, where R', the commutant of R, is the set of bounded operators on the Hilbert space that commute with all operators in R. At the end of this article, we present a double commutant theorem for Murray-von Neumann algebras.
引用
收藏
页码:7676 / 7681
页数:6
相关论文
共 50 条
  • [1] Derivations on Murray-von Neumann algebras
    Ber, A. F.
    Kudaybergenov, K. K.
    Sykochev, F. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (05) : 950 - 952
  • [2] DERIVATIONS OF MURRAY-VON NEUMANN ALGEBRAS
    Kadison, Richard V.
    Liu, Zhe
    MATHEMATICA SCANDINAVICA, 2014, 115 (02) : 206 - 228
  • [3] Reflexivity of Murray-von Neumann algebras
    Liu, Zhe
    OPERATOR ALGEBRAS AND THEIR APPLICATIONS: A TRIBUTE TO RICHARD V KADISON, 2016, 671 : 175 - 184
  • [4] Derivations of Murray-von Neumann algebras
    Ber, Aleksey
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 283 - 301
  • [5] A note on derivations of Murray-von Neumann algebras
    Kadison, Richard V.
    Liu, Zhe
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (06) : 2087 - 2093
  • [6] Ring isomorphisms of Murray-von Neumann algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (05)
  • [7] Notes on derivations of Murray-von Neumann algebras
    Ber, Aleksey
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)
  • [8] Ring derivations of Murray-von Neumann algebras
    Huang, Jinghao
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 672 : 28 - 52
  • [9] A Murray-von Neumann Type Classification of C*-algebras
    Ng, Chi-Keung
    Wong, Ngai-Ching
    OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 369 - 395
  • [10] Schur inequality for Murray-von Neumann algebras and its applications
    Ayupov, Shavkat
    Huang, Jinghao
    Kudaybergenov, Karimbergen
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (03)