Size-dependent buckling analysis of functionally graded third-order shear deformable microbeams including thermal environment effect

被引:64
|
作者
Sahmani, S. [1 ]
Ansari, R. [1 ]
机构
[1] Univ Guilan, Dept Mech Engn, Rasht, Iran
关键词
Microbeams; Strain gradient elasticity; Buckling; Thermal effect; Functionally graded materials; WALLED CARBON NANOTUBES; FREE-VIBRATION; BEAMS;
D O I
10.1016/j.apm.2013.04.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Presented herein is the prediction of buckling behavior of size-dependent microbeams made of functionally graded materials (FGMs) including thermal environment effect. To this purpose, strain gradient elasticity theory is incorporated into the classical third-order shear deformation beam theory to develop a non-classical beam model which contains three additional internal material length scale parameters to consider the effects of size dependencies. The higher-order governing differential equations are derived on the basis of Hamilton's principle. Afterward, the size-dependent differential equations and related boundary conditions are discretized along with commonly used end supports by employing generalized differential quadrature (GDQ) method. A parametric study is carried out to demonstrate the influences of the dimensionless length scale parameter, material property gradient index, temperature change, length-to-thickness aspect ratio and end supports on the buckling characteristics of FGM microbeams. It is revealed that temperature change plays more important role in the buckling behavior of FGM microbeams with higher values of dimensionless length scale parameter. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:9499 / 9515
页数:17
相关论文
共 50 条