A MESH FREE NUMERICAL METHOD FOR THE SOLUTION OF AN INVERSE HEAT PROBLEM

被引:0
|
作者
Azari, H. [1 ]
Parzlivand, F. [1 ]
Zhang, S. [2 ]
机构
[1] Shahid Beheshti Univ, Dept Math Sci, Tehran, Iran
[2] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
关键词
PARABOLIC DIFFERENTIAL-EQUATIONS; UNKNOWN COEFFICIENT; PARAMETER P(T);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine the theory of radial basis functions with the finite difference method to solve the inverse heat problem, and use five standard radial basis functions in the method of the collocation. In addition, using the newly proposed numerical procedure, we also discuss some experimental numerical results.
引用
收藏
页码:14 / 30
页数:17
相关论文
共 50 条
  • [1] Numerical solution for an inverse heat source problem by an iterative method
    Shi, Cong
    Wang, Chen
    Wei, Ting
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 577 - 597
  • [2] Lattice-free finite difference method for numerical solution of inverse heat conduction problem
    Iijima, K.
    Onishi, K.
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2007, 15 (02) : 93 - 106
  • [3] Numerical Solution of Axisymmetric Inverse Heat Conduction Problem by the Trefftz Method
    Hozejowska, Sylwia
    Piasecka, Magdalena
    [J]. ENERGIES, 2020, 13 (03)
  • [4] A numerical solution of an inverse heat conduction problem
    Shidfar, A
    Pourgholi, R
    [J]. ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 341 - 343
  • [5] THE MOLLIFICATION METHOD AND THE NUMERICAL-SOLUTION OF AN INVERSE HEAT-CONDUCTION PROBLEM
    MURIO, DA
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (01): : 17 - 34
  • [6] A NUMERICAL SOLUTION FOR THE TRANSIENT INVERSE HEAT CONDUCTION PROBLEM
    Cai, Benan
    Zhang, Qi
    Weng, Yu
    Gu, Hongfang
    Wang, Haijun
    [J]. PROCEEDINGS OF THE ASME POWER CONFERENCE JOINT WITH ICOPE-17, 2017, VOL 2, 2017,
  • [7] A Numerical Approximation to the Solution of an Inverse Heat Conduction Problem
    Azari, Hossein
    Zhang, Shuhua
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (01) : 95 - 106
  • [8] A numerical method for nonlinear inverse heat conduction problem
    Qian, Ai-lin
    Wang, Guangfu
    [J]. PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING (ICAISE 2013), 2013, 37 : 132 - 136
  • [9] Numerical solution of the imprecisely defined inverse heat conduction problem
    Smita Tapaswini
    S.Chakraverty
    Diptiranjan Behera
    [J]. Chinese Physics B, 2015, (05) : 157 - 166
  • [10] Numerical solution of inverse heat conduction problem with nonstationary measurements
    Shidfar, A
    Karamali, GR
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (01) : 540 - 548