An Energy Prediction Method using Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms

被引:0
|
作者
Kampouropoulos, K. [1 ]
Cardenas, J. J. [1 ]
Giacometto, F.
Romeral, L.
机构
[1] Fundacio CTM Ctr Tecnol, Manresa, Spain
关键词
Energy forecast; Adaptive Neuro-Fuzzy Inference System; Genetic Algorithm; intelligent Energy Management Systems;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Algorithms (GA). The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [2] The Optimization of Chiller Loading by Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Lu, Jyun-Ting
    Chang, Yung-Chung
    Ho, Cheng-Yi
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [3] Prediction of the Performance of a Solar Thermal Energy System Using Adaptive Neuro-Fuzzy Inference System
    Yaici, Wahiba
    Entchev, Evgueniy
    [J]. 2014 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATION (ICRERA), 2014, : 601 - 604
  • [4] Forecasting Copper Prices Using Hybrid Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Alameer, Zakaria
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Ye, Haiwang
    Zhang Jianhua
    [J]. NATURAL RESOURCES RESEARCH, 2019, 28 (04) : 1385 - 1401
  • [5] Forecasting Copper Prices Using Hybrid Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Zakaria Alameer
    Mohamed Abd Elaziz
    Ahmed A. Ewees
    Haiwang Ye
    Zhang Jianhua
    [J]. Natural Resources Research, 2019, 28 : 1385 - 1401
  • [6] Protein structure prediction using an adaptive neuro-fuzzy inference system
    Wang, YX
    Wang, ZH
    Li, XM
    [J]. PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1625 - 1628
  • [7] Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
    Zhang, Hanwen
    Fotouhi, Abbas
    Auger, Daniel J.
    Lowe, Matt
    [J]. BATTERIES-BASEL, 2024, 10 (03):
  • [8] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    [J]. FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [9] A Neuro-fuzzy Adaptive Power System Stabilizer Using Genetic Algorithms
    Awadallah, M. A.
    Soliman, H. M.
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2009, 37 (02) : 158 - 173
  • [10] PREDICTION OF BIOMASS PELLET DENSITY USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM(ANFIS) METHOD
    Liu, Juan
    Yan, Zhuoyu
    Xu, Mingze
    Liu, Yudi
    Bai, Xuewei
    Xiu, Yonghai
    Wei, Desheng
    [J]. INMATEH-AGRICULTURAL ENGINEERING, 2023, 70 (02): : 181 - 190