Universal prandtl number in two-dimensional Kraichnan-Batchelor turbulence

被引:0
|
作者
Nandy, Malay K. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, India
来源
关键词
turbulence; energy cascade; enstrophy cascade; passive scalar; Prandtl number; perturbation expansion; renormalization;
D O I
10.1142/S0217979208038557
中图分类号
O59 [应用物理学];
学科分类号
摘要
We evaluate the universal turbulent Prandtl numbers in the energy and enstrophy regimes of the Kraichnan-Batchelor spectra of two-dimensional turbulence using a self-consistent mode-coupling formulation coming from a renormalized perturbation expansion coupled with dynamic scaling ideas. The turbulent Prandtl number is found to be exactly unity in the (logarithmic) enstrophy regime, where the theory is infrared marginal. In the energy regime, the theory being finite, we extract singularities coming from both ultraviolet and infrared ends by means of Laurent expansions about these poles. This yields the turbulent Prandtl number sigma approximate to 0.9 in the energy regime.
引用
收藏
页码:3421 / 3431
页数:11
相关论文
共 50 条
  • [1] Two-dimensional magnetohydrodynamic turbulence in the small magnetic Prandtl number limit
    Dritschel, David G.
    Tobias, Steven M.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 703 : 85 - 98
  • [2] Kraichnan-Leith-Batchelor similarity theory and two-dimensional inverse cascades
    Burgess, B. H.
    Scott, R. K.
    Shepherd, T. G.
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 767 : 467 - 496
  • [3] Revisiting Batchelor's theory of two-dimensional turbulence
    Dritschel, David G.
    Tran, Chuong V.
    Scott, Richard K.
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 591 : 379 - 391
  • [4] Two-dimensional magnetohydrodynamic turbulence in the limits of infinite and vanishing magnetic Prandtl number
    Tran, Chuong V.
    Yu, Xinwei
    Blackbourn, Luke A. K.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 725 : 195 - 215
  • [5] Anisotropic Characteristics of the Kraichnan Direct Cascade in Two-Dimensional Hydrodynamic Turbulence
    Kuznetsov, E. A.
    Sereshchenko, E. V.
    [J]. JETP LETTERS, 2015, 102 (11) : 760 - 765
  • [6] Anisotropic characteristics of the kraichnan direct cascade in two-dimensional hydrodynamic turbulence
    E. A. Kuznetsov
    E. V. Sereshchenko
    [J]. JETP Letters, 2015, 102 : 760 - 765
  • [7] Onsager-Kraichnan Condensation in Decaying Two-Dimensional Quantum Turbulence
    Billam, T. P.
    Reeves, M. T.
    Anderson, B. P.
    Bradley, A. S.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (14)
  • [8] Testing Batchelor's similarity hypotheses for decaying two-dimensional turbulence
    Lindborg, Erik
    Vallgren, Andreas
    [J]. PHYSICS OF FLUIDS, 2010, 22 (09)
  • [9] Effects of Prandtl number in two-dimensional turbulent convection*
    He, Jian-Chao
    Fang, Ming-Wei
    Gao, Zhen-Yuan
    Huang, Shi-Di
    Bao, Yun
    [J]. CHINESE PHYSICS B, 2021, 30 (09)
  • [10] Effects of Prandtl number in two-dimensional turbulent convection
    何建超
    方明卫
    高振源
    黄仕迪
    包芸
    [J]. Chinese Physics B, 2021, 30 (09) : 220 - 226