Nonlinear dynamics of continuous-time random walks in inhomogeneous medium

被引:2
|
作者
Carnaffan, Sean [1 ]
Magdziarz, Marcin [2 ]
Szczotka, Wladyslaw [3 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Wroclaw Univ Sci & Technol, Dept Appl Math, Hugo Steinhaus Ctr, Wyspianskiego 27, PL-50370 Wroclaw, Poland
[3] Univ Wroclaw, Inst Math, Plac Crunwaldzki 2-4, PL-50384 Wroclaw, Poland
关键词
ANOMALOUS DIFFUSION; SUBDIFFUSION; RELAXATION; TRANSPORT; EQUATIONS;
D O I
10.1063/5.0002370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Continuous-time random walks (CTRWs) are an elementary model for particle motion subject to randomized waiting times. In this paper, we consider the case where the distribution of waiting times depends on the location of the particle. In particular, we analyze the case where the medium exhibits a bounded trapping region in which the particle is subject to CTRW with power-law waiting times and regular diffusion elsewhere. We derive a diffusion limit for this inhomogeneous CTRW. We show that depending on the index of the power-law distribution, we can observe either nonlinear subdiffusive or standard diffusive motion.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] FROM CLASSICAL DYNAMICS TO CONTINUOUS-TIME RANDOM-WALKS
    ZWANZIG, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1983, 30 (02) : 255 - 262
  • [2] From Continuous-Time Random Walks to Continuous-Time Quantum Walks: Disordered Networks
    Muelken, Oliver
    Blumen, Alexander
    [J]. NONLINEAR PHENOMENA IN COMPLEX SYSTEMS: FROM NANO TO MACRO SCALE, 2014, : 189 - 197
  • [3] Heterogeneous continuous-time random walks
    Grebenkov, Denis S.
    Tupikina, Liubov
    [J]. PHYSICAL REVIEW E, 2018, 97 (01)
  • [5] Nonindependent continuous-time random walks
    Montero, Miquel
    Masoliver, Jaume
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):
  • [6] Evanescent continuous-time random walks
    Abad, E.
    Yuste, S. B.
    Lindenberg, Katja
    [J]. PHYSICAL REVIEW E, 2013, 88 (06):
  • [7] MONOTONICITY FOR CONTINUOUS-TIME RANDOM WALKS
    Lyons, Russell
    White, Graham
    [J]. ANNALS OF PROBABILITY, 2023, 51 (03): : 1112 - 1138
  • [8] Time averages in continuous-time random walks
    Thiel, Felix
    Sokolov, Igor M.
    [J]. PHYSICAL REVIEW E, 2017, 95 (02)
  • [9] All-time dynamics of continuous-time random walks on complex networks
    Teimouri, Hamid
    Kolomeisky, Anatoly B.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (08):
  • [10] Continuous-time random walks: Simulation of continuous trajectories
    Kleinhans, D.
    Friedrich, R.
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):