Design of a New Piezoelectric Energy Harvester Based on Secondary Impact

被引:12
|
作者
Jung, Hyun Jun [1 ]
Baek, Ki Hwan [1 ]
Hidaka, Sinichi [1 ]
Song, Daniel [1 ]
Kim, Se Bin [1 ]
Sung, Tae Hyun [1 ]
机构
[1] Hanyang Univ, Dept Elect Engn, Seoul 133791, South Korea
关键词
energy harvesting; piezoelectric; secondary; impact;
D O I
10.1080/00150193.2013.822773
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two models for an energy harvester imparting rotational energy to piezoelectric materials are presented, in order to compare the effects of applying identical amounts of energy to a cantilever beam by changing the total displacement per unit time, and applying a secondary impact. For a piezoelectric energy harvester given a high total impulse per unit time with low total displacement per unit time, higher power outputs were generated at lower resistive loads. Conversely, for a harvester given high total displacement per unit time with low total impulse per unit time, power output was higher at high resistive loads. At matched impedance, the secondary-impact-type piezoelectric energy harvester generated higher power output than the hitting-type piezoelectric energy harvester did at low resistive load. Optimized response of secondary-impact-type piezoelectric energy harvester was obtained at a frequency of 60Hz with a low resistive load of 1 k. The generated output power was measured as 124 mW, which corresponds to power density of 140 mW/cm(3) for the entire cantilever beam, and a power density of 342 mW/cm(3) for only the piezoelectric material volume (including sliver paste volume). For a harvester without a secondary impulse at low resistive loads (1 k), the optimizing frequency was between 20 and 30Hz, with an output power of 22 mW, which corresponds to a 25 mW/cm(3) power density for entire cantilever beam and power density of 60 mW/cm(3) for only the piezoelectric material volume(including sliver paste volume).
引用
收藏
页码:83 / 93
页数:11
相关论文
共 50 条
  • [1] A new design to improve bandwidth of piezoelectric energy harvester
    Gulec, Hakan
    Gurbuz, Mevlut
    Toktas, Ayse Gul
    Gul, Mert
    Koc, Burhanettin
    Dogan, Aydin
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2020, 56 (01) : 117 - 126
  • [2] A new design to improve bandwidth of piezoelectric energy harvester
    Hakan Güleç
    Mevlut Gurbuz
    Ayse Gul Toktas
    Mert Gul
    Burhanettin Koc
    Aydin Dogan
    Journal of the Australian Ceramic Society, 2020, 56 : 117 - 126
  • [3] Impact-based piezoelectric vibration energy harvester
    Ju, Suna
    Ji, Chang-Hyeon
    APPLIED ENERGY, 2018, 214 : 139 - 151
  • [4] Design and Analysis of Vibration-Based Piezoelectric Energy Harvester
    Haid, Osob Mohamed
    Ralib, Aliza Aini Md
    Ab Rahim, Rosminazuin
    Hatta, Maziati Akmal Mohd
    Ahmad, Farah B.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 39 - 44
  • [5] Design and analysis of cantilever based piezoelectric vibration energy harvester
    Savarimuthu, Kirubaveni
    Sankararajan, Radha
    Alsath, Gulam Nabi M.
    Roji, Ani Melfa M.
    CIRCUIT WORLD, 2018, 44 (02) : 78 - 86
  • [6] Design and Experimental Study of Novel Piezoelectric Vibration Energy Impact Mass Harvester
    Allamraju, K. Viswanath
    Srikanth, K.
    INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 : 560 - 567
  • [7] Piezoelectric Energy Harvester Design and Power Conditioning
    Kumar, Dhananjay
    Chaturvedi, Pradyumn
    Jejurikar, Nupur
    2014 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS), 2014,
  • [8] Design and development of a multipurpose piezoelectric energy harvester
    Fan, Kangqi
    Chang, Jianwei
    Chao, Fengbo
    Pedrycz, Witold
    ENERGY CONVERSION AND MANAGEMENT, 2015, 96 : 430 - 439
  • [9] Design of a Honeycomb Shaped Piezoelectric Energy Harvester
    Kim, Na-Lee
    Jeong, Seong-Su
    Cheon, Seong-Kyu
    Park, Jong-Kyu
    Kim, Myong-Ho
    Park, Tae-Gone
    FERROELECTRICS, 2013, 450 (01) : 74 - 83
  • [10] Equivalent circuit model of an impact-based piezoelectric energy harvester
    Kim, S. H.
    Ju, S.
    Ji, C. H.
    Lee, S. J.
    14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557