Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

被引:583
|
作者
de los Campos, Gustavo [1 ]
Hickey, John M. [2 ]
Pong-Wong, Ricardo [3 ]
Daetwyler, Hans D. [4 ]
Calus, Mario P. L. [5 ]
机构
[1] Univ Alabama Birmingham, Sch Publ Hlth, Dept Biostat, Birmingham, AL 35294 USA
[2] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia
[3] Univ Edinburgh, Royal Dick Sch Vet Studies, Roslin Inst, Easter Bush EH25 9RG, Midlothian, Scotland
[4] Dept Primary Ind, Biosci Res Div, Bundoora, Vic 3083, Australia
[5] Wageningen UR Livestock Res, Anim Breeding & Genom Ctr, NL-8200 AB Lelystad, Netherlands
基金
澳大利亚研究理事会;
关键词
MARKER-ASSISTED SELECTION; QUANTITATIVE TRAIT LOCUS; GENETIC-RELATIONSHIP INFORMATION; DENSE MOLECULAR MARKERS; VARIABLE SELECTION; DAIRY-CATTLE; BEEF-CATTLE; MULTI-BREED; ENABLED PREDICTION; COMPLEX TRAITS;
D O I
10.1534/genetics.112.143313
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade.
引用
收藏
页码:327 / +
页数:25
相关论文
共 50 条
  • [1] Whole-genome strategies for marker-assisted plant breeding
    Xu, Yunbi
    Lu, Yanli
    Xie, Chuanxiao
    Gao, Shibin
    Wan, Jianmin
    Prasanna, Boddupalli M.
    [J]. MOLECULAR BREEDING, 2012, 29 (04) : 833 - 854
  • [2] Whole-genome strategies for marker-assisted plant breeding
    Yunbi Xu
    Yanli Lu
    Chuanxiao Xie
    Shibin Gao
    Jianmin Wan
    Boddupalli M. Prasanna
    [J]. Molecular Breeding, 2012, 29 : 833 - 854
  • [3] Statistical and Computational Challenges in Whole Genome Prediction and Genome-Wide Association Analyses for Plant and Animal Breeding
    Robert J. Tempelman
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 442 - 466
  • [4] Statistical and Computational Challenges in Whole Genome Prediction and Genome-Wide Association Analyses for Plant and Animal Breeding
    Tempelman, Robert J.
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 442 - 466
  • [5] Erratum to: Whole-genome strategies for marker-assisted plant breeding
    Yunbi Xu
    Yanli Lu
    Chuanxiao Xie
    Shibin Gao
    Jianmin Wan
    Boddupalli M. Prasanna
    [J]. Molecular Breeding, 2012, 29 (4) : 855 - 855
  • [6] Fast parallelized sampling of Bayesian regression models for whole-genome prediction
    Tianjing Zhao
    Rohan Fernando
    Dorian Garrick
    Hao Cheng
    [J]. Genetics Selection Evolution, 52
  • [7] Fast parallelized sampling of Bayesian regression models for whole-genome prediction
    Zhao, Tianjing
    Fernando, Rohan
    Garrick, Dorian
    Cheng, Hao
    [J]. GENETICS SELECTION EVOLUTION, 2020, 52 (01)
  • [8] bWGR: Bayesian whole-genome regression
    Xavier, Alencar
    Muir, William M.
    Rainey, Katy M.
    [J]. BIOINFORMATICS, 2020, 36 (06) : 1957 - 1959
  • [9] A simulation-based breeding design that uses whole-genome prediction in tomato
    Yamamoto, Eiji
    Matsunaga, Hiroshi
    Onogi, Akio
    Kajiya-Kanegae, Hiromi
    Minamikawa, Mai
    Suzuki, Akinori
    Shirasawa, Kenta
    Hirakawa, Hideki
    Nunome, Tsukasa
    Yamaguchi, Hirotaka
    Miyatake, Koji
    Ohyama, Akio
    Iwata, Hiroyoshi
    Fukuoka, Hiroyuki
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] A simulation-based breeding design that uses whole-genome prediction in tomato
    Eiji Yamamoto
    Hiroshi Matsunaga
    Akio Onogi
    Hiromi Kajiya-Kanegae
    Mai Minamikawa
    Akinori Suzuki
    Kenta Shirasawa
    Hideki Hirakawa
    Tsukasa Nunome
    Hirotaka Yamaguchi
    Koji Miyatake
    Akio Ohyama
    Hiroyoshi Iwata
    Hiroyuki Fukuoka
    [J]. Scientific Reports, 6