Three Dimensional Flexural-Gravity Waves

被引:29
|
作者
Milewski, P. A.
Wang, Z.
机构
[1] Univ Bath, Bath BA2 7AY, Avon, England
[2] Univ Wisconsin, Madison, WI 53706 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
HYDROELASTIC SOLITARY WAVES; DEEP-WATER; SURFACE-WAVES; ICE-SHEET; PACKETS; BENEATH;
D O I
10.1111/sapm.12005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Waves propagating on the surface of a three-dimensional ideal fluid of arbitrary depth bounded above by an elastic sheet that resists flexing are considered in the small amplitude modulational asymptotic limit. A Benney-Roskes-Davey-Stewartson model is derived, and we find that fully localized wavepacket solitary waves (or lumps) may bifurcate from the trivial state at the minimum of the phase speed of the problem for a range of depths. Results using a linear and two nonlinear elastic models are compared.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [1] Solitary flexural-gravity waves in three dimensions
    Trichtchenko, Olga
    Parau, Emilian I.
    Vanden-Broeck, Jean-Marc
    Milewski, Paul
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2129):
  • [2] Computation of three-dimensional flexural-gravity solitary waves in arbitrary depth
    Wang, Zhan
    Milewski, Paul A.
    Vanden-Broeck, Jean-Marc
    [J]. IUTAM SYMPOSIUM ON NONLINEAR INTERFACIAL WAVE PHENOMENA FROM THE MICRO- TO THE MACRO-SCALE, 2014, 11 : 119 - 129
  • [3] Envelope Equations for Three-Dimensional Gravity and Flexural-Gravity Waves Based on a Hamiltonian Approach
    Guyenne, Philippe
    [J]. HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, : 135 - 161
  • [4] Dromions of flexural-gravity waves
    Alam, Mohammad-Reza
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 719 : 1 - 13
  • [5] Frequencies and Profiles of Standing Flexural-Gravity Waves
    Kalinichenko, V. A.
    [J]. FLUID DYNAMICS, 2023, 58 (05) : 927 - 933
  • [6] Flexural-gravity waves in ice channel with a lead
    Zeng, L. D.
    Korobkin, A. A.
    Ni, B. Y.
    Xue, Y. Z.
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 921
  • [7] Forced and unforced flexural-gravity solitary waves
    Guyenne, Philippe
    Parau, Emilian I.
    [J]. IUTAM SYMPOSIUM ON NONLINEAR INTERFACIAL WAVE PHENOMENA FROM THE MICRO- TO THE MACRO-SCALE, 2014, 11 : 44 - 57
  • [8] Stability of flexural-gravity waves and quadratic interactions
    Marchenko A.V.
    [J]. Fluid Dynamics, 1999, 34 (1) : 78 - 86
  • [9] The interaction of flexural-gravity waves with periodic geometries
    Bennetts, L. G.
    Biggs, N. R. T.
    Porter, D.
    [J]. WAVE MOTION, 2009, 46 (01) : 57 - 73
  • [10] Frequencies and Profiles of Standing Flexural-Gravity Waves
    V. A. Kalinichenko
    [J]. Fluid Dynamics, 2023, 58 : 927 - 933