Appearance-based visual learning in a neuro-fuzzy model for fine-positioning of manipulators

被引:0
|
作者
Zhang, JW [1 ]
Schmidt, R [1 ]
Knoll, A [1 ]
机构
[1] Univ Bielefeld, Fac Technol, D-33501 Bielefeld, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an implementation of visual learning by appearance in conjunction with an adaptive, nonlinear controller for fine-positioning a manipulator onto a grasping position. We use principal component analysis to reduce the dimension of raw camera images (about 10, 000 pixels) to lower er-dimension vectors that can be used as inputs of our neuro-fuzzy controllers. It is shown that this approach leads to a very robust system that is stable under variable environment conditions. The approach needs no camera calibration and is applied to tasks of three degrees of freedom, e.g. translating the gripper in the;x-y-plane and rotating it about the x-axis.
引用
收藏
页码:1164 / 1169
页数:6
相关论文
共 50 条
  • [1] A neuro-fuzzy control model for fine-positioning of manipulators
    Zhang, J
    Knoll, A
    Schmidt, R
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2000, 32 (2-3) : 101 - 113
  • [2] An Enhancement of a Learning Procedure in Neuro-Fuzzy Model
    Vlasenko, Alexander
    Vynokurova, Olena
    Vlasenko, Nataliia
    Bodyanskiy, Yevgeniy
    [J]. 2018 IEEE FIRST INTERNATIONAL CONFERENCE ON SYSTEM ANALYSIS & INTELLIGENT COMPUTING (SAIC), 2018, : 169 - 172
  • [3] Robust neuro-fuzzy model-following control of robot manipulators
    Lin, WS
    Tsai, CH
    Wang, CH
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 1996, : 497 - 501
  • [4] Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO
    Hernandez-Vicen, Juan
    Martinez, Santiago
    Miguel Garcia-Haro, Juan
    Balaguer, Carlos
    [J]. SENSORS, 2018, 18 (04)
  • [5] Adaptive Real-time Learning-based Neuro-Fuzzy Control of Robot Manipulators
    Baselizadeh, Adel
    Saplacan, Diana
    Torresen, Jim
    [J]. 2021 THE 9TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION (ICCMA 2021), 2021, : 20 - 26
  • [6] Gravity gradiometry positioning system based on neuro-fuzzy modeling
    Rahmati S.
    Kianfar K.
    Kalat A.A.
    [J]. Gyroscopy and Navigation, 2015, 6 (1) : 16 - 24
  • [7] Neuro-fuzzy adaptive control based on dynamic inversion for robotic manipulators
    Sun, FC
    Sun, ZQ
    Li, L
    Li, HX
    [J]. FUZZY SETS AND SYSTEMS, 2003, 134 (01) : 117 - 133
  • [8] Adaptive Neuro-Fuzzy Network Enhanced Automatic Visual Servoing Algorithm for ROV Manipulators
    Sivcev, Satja
    Trslic, Petar
    Adley, David
    Robinson, Luke
    Dooly, Gerard
    Omerdic, Edin
    Toal, Daniel
    [J]. OCEANS 2019 MTS/IEEE SEATTLE, 2019,
  • [9] Neuro-fuzzy model-based control
    Matko, D
    Kavsek-Biasizzo, K
    Kocijan, J
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1998, 23 (2-4) : 249 - 265
  • [10] Neuro-fuzzy Model-based Control
    D. Matko
    K. Kavšek-Biasizzo
    J. Kocijan
    [J]. Journal of Intelligent and Robotic Systems, 1998, 23 : 249 - 265