Bayesian Analysis of RNA-Seq Data Using a Family of Negative Binomial Models

被引:4
|
作者
Zhao, Lili [1 ]
Wu, Weisheng [2 ]
Feng, Dai [3 ]
Jiang, Hui [1 ]
Nguyen, XuanLong [4 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Merck Res Labs, Biometr Res Dept, Boston, MA USA
[4] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
BAYESIAN ANALYSIS | 2018年 / 13卷 / 02期
基金
美国国家科学基金会;
关键词
Bayesian RNA-Seq; Chinese restaurant table distribution; differential test; exon usage; transcript analysis; GENE-EXPRESSION; SEQUENCING DATA; PACKAGE; COUNT;
D O I
10.1214/17-BA1055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The analysis of RNA-Seq data has been focused on three main categories, including gene expression, relative exon usage and transcript expression. Methods have been proposed independently for each category using a negative binomial (NB) model. However, counts following a NB distribution on one feature (e.g., exon) do not guarantee a NB distribution for the other two features (e.g., gene/transcript). In this paper we propose a family of Negative Binomial models, which integrates the gene, exon and transcript analysis under a coherent NB model. The proposed model easily incorporates the uncertainty of assigning reads to transcripts and simplifies substantially the estimation for the relative usage. We developed simple Gibbs sampling algorithms for the posterior inference by exploiting fully tractable closed-forms of computation via suitable conjugate priors. The proposed models were investigated under extensive simulations. Finally, we applied our model to a real data set.
引用
收藏
页码:411 / 436
页数:26
相关论文
共 50 条
  • [1] Negative binomial additive model for RNA-Seq data analysis
    Xu Ren
    Pei-Fen Kuan
    [J]. BMC Bioinformatics, 21
  • [2] Negative binomial additive model for RNA-Seq data analysis
    Ren Xu
    Kuan Pei-Fen
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)
  • [3] NBLDA: negative binomial linear discriminant analysis for RNA-Seq data
    Kai Dong
    Hongyu Zhao
    Tiejun Tong
    Xiang Wan
    [J]. BMC Bioinformatics, 17
  • [4] NBLDA: negative binomial linear discriminant analysis for RNA-Seq data
    Dong, Kai
    Zhao, Hongyu
    Tong, Tiejun
    Wan, Xiang
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [5] A SPARSE NEGATIVE BINOMIAL CLASSIFIER WITH COVARIATE ADJUSTMENT FOR RNA-SEQ DATA
    Rahman, Tanbin
    Huang, Hsin-En
    Li, Yujia
    Tai, An-Shun
    Hseih, Wen-Ping
    McClung, Colleen A.
    Tseng, George
    [J]. ANNALS OF APPLIED STATISTICS, 2022, 16 (02): : 1071 - 1089
  • [6] Sample size calculations for the differential expression analysis of RNA-seq data using a negative binomial regression model
    Li, Xiaohong
    Wu, Dongfeng
    Cooper, Nigel G. F.
    Rai, Shesh N.
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2019, 18 (01)
  • [7] Marginal likelihood estimation of negative binomial parameters with applications to RNA-seq data
    Leon-Novelo, Luis
    Fuentes, Claudio
    Emerson, Sarah
    [J]. BIOSTATISTICS, 2017, 18 (04) : 637 - 650
  • [8] A sparse negative binomial mixture model for clustering RNA-seq count data
    Li, Yujia
    Rahman, Tanbin
    Ma, Tianzhou
    Tang, Lu
    Tseng, George C.
    [J]. BIOSTATISTICS, 2022, 24 (01) : 68 - 84
  • [9] Flexible analysis of RNA-seq data using mixed effects models
    Turro, Ernest
    Astle, William J.
    Tavare, Simon
    [J]. BIOINFORMATICS, 2014, 30 (02) : 180 - 188
  • [10] RNA-Seq Data Analysis using Nonparametric Gaussian Process Models
    Thanh Nguyen
    Nahavandi, Saeid
    Creighton, Douglas
    Khosravi, Abbas
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 5087 - 5093