Shape design and CFD analysis on a 1MW-class horizontal axis tidal current turbine blade

被引:5
|
作者
Singh, P. M. [1 ]
Choi, Y. D. [2 ]
机构
[1] Mokpo Natl Univ, Grad Sch, Dept Mech Engn, 61 Dorim Ri, Cheonggye Myeon 530729, Jeollanam Do, South Korea
[2] Mokpo Natl Univ, Dept Mech Engn, Muan 530729, South Korea
关键词
D O I
10.1088/1757-899X/52/5/052018
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study aims to develop a 1MW-class horizontal axis tidal current turbine rotor blade which can be applied near the southwest island regions of South Korea. On the basis of actual tidal current conditions of southern region of Korea, configuration design of 1MW class turbine rotor blade is carried out by BEMT (Blade element momentum theory). The hydrodynamic performance including the lift and drag forces, is conducted with the variation of the angle of attack using an open source code of X-Foil. The purpose of the study is to study the shape of the hydrofoil used and how it affects the performance of the turbine. After a thorough study of many airfoils, a new hydrofoil is developed using the S814 and DU-91-W2- 250 airfoils, which show good performance for rough conditions. A combination of the upper and lower surface of the two hydrofoils is tested. Three dimensional models were developed and the optimized blade geometry is used for CFD (Computational Fluid Dynamics) analysis with hexahedral numerical grids. Power coefficient, pressure coefficient and velocity distributions are investigated according to Tip Speed Ratio by CFD analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Optimal design of horizontal axis tidal current turbine blade
    Li, Zhen-qi
    Li, Guang-nian
    Du, Lin
    Guo, Hai-peng
    Yuan, Wen-xin
    OCEAN ENGINEERING, 2023, 271
  • [2] Blade design and optimization of a horizontal axis tidal turbine
    Zhu, Fu-wei
    Ding, Lan
    Huang, Bin
    Bao, Ming
    Liu, Jin-Tao
    OCEAN ENGINEERING, 2020, 195
  • [3] STRUCTURAL DESIGN OF A HORIZONTAL-AXIS TIDAL CURRENT TURBINE COMPOSITE BLADE
    Bir, Gunjit S.
    Lawson, Michael J.
    Li, Ye
    OMAE2011: PROCEEDINGS OF THE ASME 30TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, VOL 5: OCEAN SPACE UTILIZATION ; OCEAN RENEWABLE ENERGY, 2011, : 797 - 808
  • [4] Design and CFD analysis of Horizontal Axis Wind Turbine Blade with Microtab
    Nair, Manu S.
    Arihant, V
    Priya, D. Bhanu
    Subramaniyam, Murali
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2020), PTS 1-6, 2020, 912
  • [5] Design of a horizontal axis tidal current turbine
    Goundar, Jai N.
    Ahmed, M. Rafiuddin
    APPLIED ENERGY, 2013, 111 : 161 - 174
  • [6] Performance of horizontal axis tidal current turbine by blade configuration
    Jo, Chul Hee
    Yim, Jin Young
    Lee, Kang Hee
    Rho, Yu Ho
    RENEWABLE ENERGY, 2012, 42 : 195 - 206
  • [7] Design of the Blade under Low Flow Velocity for Horizontal Axis Tidal Current Turbine
    Chen, Jun-Hua
    Wang, Xian-Cheng
    Li, Hao
    Jiang, Chu-Hua
    Bao, Ling-Jie
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (12) : 1 - 13
  • [8] The Blade Design of a Bionic Shark Fin Airfoil for a Horizontal Axis Tidal Current Turbine
    Zhang, Kaisheng
    Yang, Shihao
    Gao, Zhen
    Zhang, Baocheng
    JOURNAL OF ENERGY ENGINEERING, 2021, 147 (06)
  • [9] Blade design and performance analysis on the horizontal axis tidal current turbine for low water level channel
    Chen, C. C.
    Choi, Y. D.
    Yoon, H. Y.
    6TH INTERNATIONAL CONFERENCE ON PUMPS AND FANS WITH COMPRESSORS AND WIND TURBINES (ICPF2013), 2013, 52
  • [10] Structural design and analysis of composite blade for horizontal-axis tidal turbine
    Quang Duy Nguyen
    Park, Hoon Cheol
    Kang, Taesam
    Ko, Jin Hwan
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2018, 25 (06) : 1075 - 1083