WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR A SPACE-DEPENDENT ANYON BOLTZMANN EQUATION

被引:4
|
作者
Arkeryd, Leif [1 ]
Nouri, Anne [2 ]
机构
[1] Chalmers, Math Sci, S-41296 Gothenburg, Sweden
[2] Aix Marseille Univ, CNRS, Cent Marseille, UMR 7373 I2M, F-13453 Marseille, France
关键词
anyon; Haldane statistics; low temperature kinetic theory; quantum Boltzmann equation; FOURIER INTEGRAL-OPERATORS; BOSE-EINSTEIN PARTICLES; FERMI-DIRAC PARTICLES; FRACTIONAL-STATISTICS; WEAK SOLUTIONS; COMPACTNESS;
D O I
10.1137/15M1012335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully nonlinear kinetic Boltzmann equation for anyons is studied in a periodic one-dimensional setting with large initial data. Strong L-1 solutions are obtained for the Cauchy problem. The main results concern global existence, uniqueness, and stability. We use the Bony functional, the two-dimensional velocity frame specific for anyons, and an initial layer analysis that moves the solution away from a critical value.
引用
收藏
页码:4720 / 4742
页数:23
相关论文
共 50 条