Integration Formulae and Kernels in Singular Subvarieties of Cn

被引:0
|
作者
Hernandez-Perez, Luis M. [1 ]
Zeron, Eduardo S. [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Matemat, Mexico City 07000, DF, Mexico
来源
关键词
Bochner Martinelli kernel; singular subvariety; REPRESENTATION FORMULAS; HOMOGENEOUS VARIETIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bochner-Martinelli and Ramirez-Khenkin integration formulae are a pair of cornerstones of the field of several complex variables. They are naturally defined on open domains of C-n. An obvious problem is to produce respective integration formulae on general smooth or singular varieties. We propose in this work a simple technique for producing integration formulae on singular subvarieties defined as the zero locus of special polynomials in C-n. The main idea is to push down the integration kernels from a neighborhood of the subvariety into the subvariety itself.
引用
收藏
页码:135 / 147
页数:13
相关论文
共 50 条