Shrinkage estimation of the exponentiated Weibull regression model for time-to-event data

被引:3
|
作者
Hossain, Shakhawat [1 ]
Khan, Shahedul A. [2 ]
机构
[1] Univ Winnipeg, Dept Math & Stat, Winnipeg, MB R3B 2E9, Canada
[2] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
asymptotic risk; exponentiated Weibull; maximum likelihood; shrinkage; time-to-event data; FAMILY; GAMMA;
D O I
10.1111/stan.12220
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The exponentiated Weibull distribution is a convenient alternative to the generalized gamma distribution to model time-to-event data. It accommodates both monotone and nonmonotone hazard shapes, and flexible enough to describe data with wide ranging characteristics. It can also be used for regression analysis of time-to-event data. The maximum likelihood method is thus far the most widely used technique for inference, though there is a considerable body of research of improving the maximum likelihood estimators in terms of asymptotic efficiency. For example, there has recently been considerable attention on applying James-Stein shrinkage ideas to parameter estimation in regression models. We propose nonpenalty shrinkage estimation for the exponentiated Weibull regression model for time-to-event data. Comparative studies suggest that the shrinkage estimators outperform the maximum likelihood estimators in terms of statistical efficiency. Overall, the shrinkage method leads to more accurate statistical inference, a fundamental and desirable component of statistical theory.
引用
收藏
页码:592 / 610
页数:19
相关论文
共 50 条
  • [1] Exponentiated Weibull regression for time-to-event data
    Khan, Shahedul A.
    [J]. LIFETIME DATA ANALYSIS, 2018, 24 (02) : 328 - 354
  • [2] Exponentiated Weibull regression for time-to-event data
    Shahedul A. Khan
    [J]. Lifetime Data Analysis, 2018, 24 : 328 - 354
  • [3] Adjusted regression estimation for time-to-event data with differential measurement error
    Yu, Menggang
    [J]. BIOMETRIKA, 2013, 100 (03) : 757 - 763
  • [4] Semiparametric regression for discrete time-to-event data
    Berger, Moritz
    Schmid, Matthias
    [J]. STATISTICAL MODELLING, 2018, 18 (3-4) : 322 - 345
  • [5] Regression modeling of time-to-event data with censoring
    Dey, Tanujit
    Lipsitz, Stuart R.
    Cooper, Zara
    Trinh, Quoc-Dien
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2022, 19 (12) : 1513 - 1515
  • [6] Regression modeling of time-to-event data with censoring
    Tanujit Dey
    Stuart R. Lipsitz
    Zara Cooper
    Quoc-Dien Trinh
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2022, 19 : 1513 - 1515
  • [7] Bayesian estimation for the exponentiated Weibull model
    Nassar, MM
    Eissa, FH
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (10) : 2343 - 2362
  • [8] Flexible semiparametric mode regression for time-to-event data
    Seipp, Alexander
    Uslar, Verena
    Weyhe, Dirk
    Timmer, Antje
    Otto-Sobotka, Fabian
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (12) : 2352 - 2367
  • [9] The log-exponentiated Weibull regression model for interval-censored data
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Cancho, Vicente G.
    Cordeiro, Gauss M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 1017 - 1035
  • [10] Heteroscedastic log-exponentiated Weibull regression model
    Ortega, Edwin M. M.
    Lemonte, Artur J.
    Cordeiro, Gauss M.
    Cancho, Vicente G.
    Mialhe, Fabio L.
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (03) : 384 - 408