A ?Reinforced Concrete? Structure of Silicon Embedded into an In Situ Grown Carbon Nanotube Scaffold as a High-Performance Anode for Sulfide-Based All-Solid-State Batteries

被引:15
|
作者
Hu, Liuyi [1 ]
Yan, Xiang [1 ]
Fu, Zefeng [1 ]
Zhang, Jun [1 ]
Xia, Yang [1 ]
Zhang, Wenkui [1 ]
Gan, Yongping [1 ]
He, Xinping [1 ]
Huang, Hui [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
关键词
all-solid-state battery; Si; C composites; sulfide solid electrolyte; carbon nanotubes; Interface stability; electrochemical performance; LI-ION BATTERIES; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; RATE CAPABILITY; LITHIUM;
D O I
10.1021/acsaem.2c02890
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing lithium with a Si anode is a very promising route for the development of all-solid-state batteries (ASSBs) to eliminate the uncontrolled growth of Li dendrites. However, the Si anode still undergoes low electric conductivity and severe volume changes during cycling leading to poor interfacial stability against solid electrolytes. Herein, we report an integrated anode of silicon/ carbon-nanotubes/carbon (Si/CNTs/C) for the stable operation of sulfide-based ASSBs. The in situ synthesized Si/CNTs/C from Mg2Si reacting with CaCO3 in the presence of a ferrocene catalyst for CNT growth exhibits a similar '' reinforced concrete '' structure, where CNTs provide a mechanical stable scaffold for Si particle embedding. In this composite, CNTs act as a '' reinforcing bar '' fixing Si active particles tightly, which not only maintain good interfacial contact between Si and Li6PS5Cl components but also alleviate the volume expansion of Si and prevent the lithium-ion channel of Li6PS5Cl from being destroyed. As the anode for ASSBs, the reversible capacity of Si/CNTs/C was 1226 mA h g-1 after 50 cycles at 50 mA g-1. This study provides an idea for the application of Si-based materials in ASSBs.
引用
收藏
页码:14353 / 14360
页数:8
相关论文
共 50 条
  • [1] Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries
    Oh, Jihoon
    Choi, Seung Ho
    Chang, Barsa
    Lee, Jieun
    Lee, Taegeun
    Lee, Nohjoon
    Kim, Hyuntae
    Kim, Yunsung
    Im, Gahyeon
    Lee, Sangheon
    Choi, Jang Wook
    ACS ENERGY LETTERS, 2022, 7 (04) : 1374 - 1382
  • [2] A high-performance organic cathode customized for sulfide-based all-solid-state batteries
    Ji, Weixiao
    Zhang, Xiaoxiao
    Xin, Le
    Luedtke, Avery
    Zheng, Dong
    Huang, He
    Lambert, Tristan
    Qu, Deyang
    ENERGY STORAGE MATERIALS, 2022, 45 : 680 - 686
  • [3] Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review
    Wang, Xinyang
    He, Kuang
    Li, Siyuan
    Zhang, Jiahui
    Lu, Yingying
    NANO RESEARCH, 2023, 16 (03) : 3741 - 3765
  • [4] Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review
    Xinyang Wang
    Kuang He
    Siyuan Li
    Jiahui Zhang
    Yingying Lu
    Nano Research, 2023, 16 : 3741 - 3765
  • [5] A Porous Li-Al Alloy Anode toward High-Performance Sulfide-Based All-Solid-State Lithium Batteries
    Zhu, Jinhui
    Luo, Jiayao
    Li, Jingyan
    Huang, Senhe
    Geng, Haozhe
    Chen, Zhenying
    Jia, Linan
    Fu, Yongzhu
    Zhang, Xi
    Zhuang, Xiaodong
    ADVANCED MATERIALS, 2024, 36 (39)
  • [6] Li metal anode interface in sulfide-based all-solid-state Li batteries
    Li, Jingyan
    Luo, Jiayao
    Li, Xiang
    Fu, Yongzhu
    Zhu, Jinhui
    Zhuang, Xiaodong
    ECOMAT, 2023, 5 (08)
  • [7] Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application
    Liu, Yuankai
    Yu, Tao
    Guo, Shaohua
    Zhou, Haoshen
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (08)
  • [8] In-situ constructing 3D nanocarbon conduction conformal network on silicon anodes for high-performance sulfide-based all-solid-state batteries
    Huang, Rui
    Li, Ruilong
    Li, Shaobo
    Yang, Wen
    Bai, Yu
    Wang, Zhenhua
    Sun, Kening
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [9] High-Performance All-Solid-State Batteries Enabled by Intimate Interfacial Contact Between the Cathode and Sulfide-Based Solid Electrolytes
    Kim, Jeongheon
    Kim, Min Ji
    Kim, Jaeik
    Lee, Jin Woong
    Park, Joonhyeok
    Wang, Sung Eun
    Lee, Seungwoo
    Kang, Yun Chan
    Paik, Ungyu
    Jung, Dae Soo
    Song, Taeseup
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (12)
  • [10] Stable cyclability of porous Si anode applied for sulfide-based all-solid-state batteries
    Okuno, Ryota
    Yamamoto, Mari
    Terauchi, Yoshihiro
    Takahashi, Masanari
    5TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS ENGINEERING (CPESE 2018), 2019, 156 : 183 - 186