Landsat 8: UDT-CWT based Denoising and Yield Estimation

被引:0
|
作者
Kanagala, Sateesh Kumar [1 ]
Sreenivasulu, G. [1 ]
机构
[1] SV Univ, Dept Elect & Commun Engn, Sri Venkateswara Univ Coll Engn, Tirupati 517502, Andhra Pradesh, India
关键词
Automatic Weather Station; Leaf Area Index; Meteorological; Remote Sensing; Undecimated Dual-Tree Complex Wavelet;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes the regression model for the estimation of the yield for the two crops (Rice and Groundnut) by applying image processing techniques on Landsat 8 imagery. The Undecimated Dual-Tree Complex Wavelet Transform (UDT-CWT) is used to denoise the Landsat 8 Imagery. After that Remote Sensing (RS) parameters like Leaf Area Index (LAI), and 6 Vegetation Indices (VI) including Normalized Difference of Vegetation Index (NDVI), Soil and Atmospherically Resistant Vegetation Index (SARVI), and Modified Soil Vegetation Index (MSAVI) etc., were retrieved. This paper, reveals the impact of noise on these derived RS parameters and the denoising technique results PSNR= 49 dB; SSIM=1 for SARVI. Then designed a regression model with this SARVI approach. This regression model also involves Meteorological Parameters like Rainfall, Temperature, Evapotranspiration which are collected from Automatic Weather Stations (AWS). The outcome of the proposed estimation model is precisely validated for a period of 2014 to 2017 with ground truth data and outperforms good correlation R-2=0.78 for Kharif and R-2=0.74 for Rabi seasons.
引用
收藏
页码:1036 / 1040
页数:5
相关论文
共 50 条
  • [1] REMOTE ESTIMATION OF WHEAT YIELD BASED ON VEGETATION INDICES DERIVED FROM TIME SERIES DATA OF LANDSAT 8 IMAGERY
    Naqvi, S. M. Z. A.
    Tater, M. N.
    Shah, G. A.
    Sattar, R. S.
    Awais, M.
    [J]. APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (02): : 3909 - 3925
  • [2] Image-based tea yield estimation using Landsat-8 OLI and Sentinel-2B images
    Ramadanningrum, Dyah Puteri
    Kamal, Muhammad
    Murti, Sigit Heru
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2020, 20
  • [3] A New Bivariate MAP Estimator for DT-CWT-Based Video Denoising
    Rahman, S. M. Mahbubur
    Ahmad, M. Omair
    Swamy, M. N. S.
    [J]. ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 517 - 520
  • [4] Cotton yield estimation model based on fusion image from MODIS and Landsat data
    Meng, Linghua
    Liu, Huanjun
    Zhang, Xinle
    Xu, Mengyuan
    Guo, Dong
    Pan, Yue
    [J]. 2018 7TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2018, : 253 - 257
  • [5] Canopy cover estimation of agroforestry based on airborne LiDAR and Landsat 8 OLI
    Rudianto, Yoga
    Prasetyo, Lilik B.
    Setiawan, Yudi
    Hudjimartsu, Sahid
    [J]. SIXTH INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE (LISAT 2019), 2019, 11372
  • [6] Landsat 8 Based Leaf Area Index Estimation in Loblolly Pine Plantations
    Blinn, Christine E.
    House, Matthew N.
    Wynne, Randolph H.
    Thomas, Valerie A.
    Fox, Thomas R.
    Sumnall, Matthew
    [J]. FORESTS, 2019, 10 (03)
  • [7] Silage maize yield estimation by using planetscope, sentinel-2A and landsat 8 OLI satellite images
    Tunca, Emre
    Koksal, Eyup Selim
    Taner, Sakine cetin
    [J]. SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [8] Rice yield estimation using Landsat ETM plus Data
    Siyal, Altaf Ali
    Dempewolf, Jan
    Becker-Reshef, Inbal
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [9] Yield estimation of corn based on multitemporal LANDSAT-TM data as input for an agrometeorological model
    Bach, H
    [J]. PURE AND APPLIED OPTICS, 1998, 7 (04): : 809 - 825
  • [10] Bias Estimation for the Landsat 8 Operational Land Imager
    Vanderwerff, K.
    Morfitt, R.
    [J]. EARTH OBSERVING SYSTEMS XVI, 2011, 8153