Robust absolute stability and nonlinear state feedback stabilization based on polynomial Lur'e functions

被引:16
|
作者
Montagner, V. F. [2 ]
Oliveira, R. C. L. F. [3 ]
Calliero, T. R. [3 ]
Borges, R. A. [3 ]
Peres, P. L. D. [3 ]
Prieur, C. [1 ]
机构
[1] Univ Toulouse 2, CNRS, LAAS, F-31077 Toulouse 4, France
[2] CT Alegrete UNIPAMPA GEPOC UFSM, BR-97546550 Alegrete, RS, Brazil
[3] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
DEPENDENT LYAPUNOV FUNCTIONS; SYSTEMS; RELAXATIONS; CRITERIA; CIRCLE;
D O I
10.1016/j.na.2008.02.081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides finite-dimensional convex conditions to construct homogeneous polynormally parameter-dependent Lur'e functions which ensure the stability of nonlinear systems with state-dependent nonlinearities lying in general sectors and which are affected by uncertain parameters belonging to the unit simplex. The proposed conditions are written as linear matrix inequalities parametrized in terms of the degree g of the parameter-dependent solution and in terms of the relaxation level d of the inequality constraints, based on the algebraic properties of positive matrix polynomials with parameters in the unit simplex. As g and d increase, progressively less conservative solutions are obtained. The results in the paper include as special cases existing conditions for robust stability and for absolute stability analysis. A convex solution suitable for the design of robust nonlinear state feedback stabilizing controllers is also provided. Numerical examples illustrate the efficiency of the proposed conditions. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1803 / 1812
页数:10
相关论文
共 50 条
  • [1] Robust absolute stability and stabilization based on homogeneous polynomially parameter-dependent Lur'e functions
    Montagner, V. F.
    Oliveira, R. C. L. F.
    Calliero, T. R.
    Borges, R. A.
    Peres, P. L. D.
    Prieur, C.
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 1930 - +
  • [2] Robust observer-based absolute stabilization for Lur'e singularly perturbed systems with state delay
    Liu, Wei
    Wang, Yanyan
    [J]. ISA TRANSACTIONS, 2016, 65 : 1 - 8
  • [3] Robust absolute stability of general interval Lur'e type nonlinear control systems
    [J]. Sun, J., 2001, Editorial Dept. of Systems Engineering and Electronics (12):
  • [4] Robust Absolute Stability of General Interval Lur'e Type Nonlinear Control Systems
    孙继涛
    邓飞其
    刘永清
    [J]. Journal of Systems Engineering and Electronics, 2001, (04) : 46 - 52
  • [5] Absolute stabilization of Lur'e systems via dynamic output feedback
    Zhang, Fan
    Trentelman, Harry L.
    Feng, Gang
    Scherpen, Jacquelien M. A.
    [J]. EUROPEAN JOURNAL OF CONTROL, 2018, 44 : 15 - 26
  • [6] Lur'e Lyapunov functions and absolute stability criteria for Lur'e systems with multiple nonlinearities
    Yang, Chunyu
    Zhang, Qingling
    Zhou, Linna
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2007, 17 (09) : 829 - 841
  • [7] Absolute stability criteria for a generalized Lur'e problem with delay in the feedback
    Zevin, AA
    Pinsky, MA
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (06) : 2000 - 2008
  • [8] Absolute Stabilization of Lur'e Systems Under Event-Triggered Feedback
    Zhang, Fan
    Mazo, Manuel, Jr.
    van de Wouw, Nathan
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 15301 - 15306
  • [9] Robust absolute stability criteria for uncertain Lur'e systems of neutral type
    Han, Qing-Long
    Xue, Anke
    Liu, Shirong
    Yu, Xinghuo
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (03) : 278 - 295
  • [10] IMPROVED ROBUST ABSOLUTE STABILITY OF TIME-DELAYED LUR'E SYSTEMS
    Li, Yan
    Duan, Wenyong
    Shen, Cuifeng
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2020, 16 (02): : 495 - 512