PROPERTIES OF WORST-CASE GMRES

被引:6
|
作者
Faber, Vance [1 ]
Liesen, Joerg [2 ]
Tichy, Petr [3 ]
机构
[1] Vanco Res, Big Pine Key, FL 33043 USA
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[3] Acad Sci Czech Republic, Inst Comp Sci, Prague 18207, Czech Republic
关键词
GMRES method; worst-case convergence; ideal GMRES; matrix approximation; problems; minmax; NONSYMMETRIC LINEAR-SYSTEMS; IDEAL GMRES; MATRIX; POLYNOMIALS; ALGORITHM;
D O I
10.1137/13091066X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the convergence analysis of the GMRES method for a given matrix A, one quantity of interest is the largest possible residual norm that can be attained, at a given iteration step k, over all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for A and k. We show that the worst-case behavior of GMRES for the matrices A and A(T) is the same, and we analyze properties of initial vectors for which the worst-case residual norm is attained. In particular, we prove that such vectors satisfy a certain "cross equality." We show that the worst-case GMRES polynomial may not be uniquely determined, and we consider the relation between the worst-case and the ideal GMRES approximations, giving new examples in which the inequality between the two quantities is strict at all iteration steps k >= 3. Finally, we give a complete characterization of how the values of the approximation problems change in the context of worst-case and ideal GMRES for a real matrix, when one considers complex (rather than real) polynomials and initial vectors.
引用
收藏
页码:1500 / 1519
页数:20
相关论文
共 50 条
  • [1] The worst-case GMRES for normal matrices
    Liesen, J
    Tichy, P
    [J]. BIT NUMERICAL MATHEMATICS, 2004, 44 (01) : 79 - 98
  • [2] The Worst-Case GMRES for Normal Matrices
    Jörg Liesen
    Petr Tichý
    [J]. BIT Numerical Mathematics, 2004, 44 : 79 - 98
  • [3] On worst-case GMRES, ideal GMRES, and the polynomial numerical hull of a Jordan block
    Tichy, Petr
    Liesen, Jorg
    Faber, Vance
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 26 : 453 - 473
  • [4] On worst-case GMRES, ideal GMRES, and the polynomial numerical hull of a Jordan block
    Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, 18207 Prague, Czech Republic
    不详
    不详
    [J]. Electron. Trans. Numer. Anal., 2007, (453-473):
  • [5] Worst-case asymptotic properties of H∞ identification
    Chen, J
    Gu, GX
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (04) : 437 - 446
  • [6] Worst-case scenario
    Slee, A
    Harrison, D
    Field, R
    [J]. TCE, 2005, (773): : 42 - 43
  • [7] The worst-case scenario
    Stephen Schneider
    [J]. Nature, 2009, 458 : 1104 - 1105
  • [8] Worst-case scenarios
    Wilkinson, T. M.
    [J]. RES PUBLICA-A JOURNAL OF MORAL LEGAL AND POLITICAL PHILOSOPHY, 2009, 15 (02): : 203 - 211
  • [9] The worst-case scenario
    Schneider, Stephen
    [J]. NATURE, 2009, 458 (7242) : 1104 - 1105
  • [10] Worst-case scenarios
    Durodie, Bill
    [J]. INTERNATIONAL AFFAIRS, 2008, 84 (03) : 567 - 568