Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites

被引:61
|
作者
Song, Jiandong [1 ]
Duy Liem Nguyen [1 ]
Manathamsombat, Chatchai [1 ]
Kim, Dong Joo [1 ]
机构
[1] Sejong Univ, Dept Civil & Environm Engn, Seoul 143747, South Korea
关键词
Self-sensing; discontinuous reinforcement; smart materials; electrical properties; ELECTRICAL-RESISTIVITY; MATRIX COMPOSITE; CARBON-BLACK; CONCRETE; DAMAGE; POLARIZATION; SENSORS;
D O I
10.1177/0021998314568169
中图分类号
TB33 [复合材料];
学科分类号
摘要
This research investigated the effect of fiber volume content on the electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites under direct tension. There is strong correlation between the change of electrical resistivity and the tensile response of strain-hardening steel-fiber-reinforced cementitious composites: the electrical resistivity of strain-hardening steel-fiber-reinforced cementitious composites clearly decreased during strain hardening as the tensile strain of them increased. The electrical conductivity, tensile resistance, and damage-sensing capacity of strain-hardening steel-fiber-reinforced cementitious composites were generally increased as the volume content of twisted steel fibers added in a mortar matrix increased from 0.0 to 2.0%. The strain-hardening steel-fiber-reinforced cementitious composites with fiber content more than 1% by volume produced high damage-sensing capacity with high nominal gauge factor: absolute value over 150. Besides, the addition of carbon black or ground granulated blast furnace slag in mortar matrices significantly reduced the electrical resistivity but slightly enhanced the damage-sensing capability of strain-hardening steel-fiber-reinforced cementitious composites.
引用
收藏
页码:3621 / 3634
页数:14
相关论文
共 50 条
  • [1] Corrosion resistance of strain-hardening steel-fiber-reinforced cementitious composites
    Ngoc Thanh Tran
    Pyo, Sukhoon
    Kim, Dong Joo
    CEMENT & CONCRETE COMPOSITES, 2015, 63 : 17 - 29
  • [2] Characterization of Novel Natural Fiber-Reinforced Strain-Hardening Cementitious Composites
    Premkumar, N.
    Maheswaran, J.
    Chellapandian, M.
    ACI STRUCTURAL JOURNAL, 2024, 121 (05)
  • [3] Bond behavior between steel bar and strain-hardening fiber-reinforced cementitious composites under fatigue loading
    Li, Qing-Hua
    Luo, Ai-Min
    Huang, Bo-Tao
    Wang, Guo-Zhong
    Xu, Shi-Lang
    ENGINEERING STRUCTURES, 2024, 314
  • [4] FINITE ELEMENT MODELING OF STRAIN-HARDENING FIBER-REINFORCED CEMENTITIOUS COMPOSITES (SHCC)
    Kabele, P.
    FIBRE CONCRETE 2011: TECHNOLOGY, DESIGN, APPLICATION, 2011, : 67 - 68
  • [5] Comparative electromechanical damage-sensing behaviors of six strain-hardening steel fiber-reinforced cementitious composites under direct tension
    Duy Liem Nguyen
    Song, Jiandong
    Manathamsombat, Chatchai
    Kim, Dong Joo
    COMPOSITES PART B-ENGINEERING, 2015, 69 : 159 - 168
  • [6] Experiments and performances of strain-hardening fiber low cementitious composites
    Cho, Chang-Geun
    Lim, Hyeon-Jin
    Lee, Bang-Yeon
    Choi, Yeol
    ADVANCES IN MECHANICAL ENGINEERING, 2015, 7 (06) : 1 - 7
  • [8] Micromechanical Properties of Steel-Fiber-Reinforced Cementitious Composites Characterized with Nanoindentation
    Zhao, Yan-Ru
    Wang, Lei
    Dong, Yan-Ying
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [9] Shear interfacial fracture of strain-hardening fiber-reinforced cementitious composites and concrete: A novel approach
    Li, Qing-Hua
    Yin, Xing
    Huang, Bo-Tao
    Luo, Ai-Min
    Lyu, Yao
    Sun, Chao-Jie
    Xu, Shi-Lang
    ENGINEERING FRACTURE MECHANICS, 2021, 253
  • [10] Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites
    Huo, Yanlin
    Sun, Huayang
    Liu, Tian'an
    He, Yixin
    Chen, Zhitao
    Lv, Chengbo
    Yang, Yingzi
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (11): : 5086 - 5097